Find solutions to the Riemann Problems
i) Find the solution to the Riemann Problem for
$u_t + (u^3)_x = 0$
$U_L = 2$ and $U_R = 1$
ii) Find the solution to the Riemann Problem for
$v_t + 3/2 (v^4)_x = 0$
$V_L = 4$ and $V_R = 1$
iii) Show that $v = u^2$ with u from (i) formally solves (ii). Hint: multiply (i) by $u$.
153
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
1.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1427 views
- $13.00
Related Questions
- Laplace transforms and initial value problems.
- Show that $\Delta \log (|f(z)|)=0$, where $f(z)$ is an analytic function.
- 10 questions Differential Equations
- 3 Multi-step response questions
- Ordinary Differential Equations Word Problems
- Find the general solution of the system of ODE $X'=\begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix} X$
- General Solution of a PDE and Fourier Series Representations of Functionsns
- Derive the solution $u(x,t)=\frac{x}{\sqrt{4 \pi}} \int_{0}^{t} \frac{1}{(t-s)^{3/2}}e^{\frac{-x^2}{4(t-s)}}g(s) \, ds$ for the heat equation