Find solutions to the Riemann Problems
i) Find the solution to the Riemann Problem for
$u_t + (u^3)_x = 0$
$U_L = 2$ and $U_R = 1$
ii) Find the solution to the Riemann Problem for
$v_t + 3/2 (v^4)_x = 0$
$V_L = 4$ and $V_R = 1$
iii) Show that $v = u^2$ with u from (i) formally solves (ii). Hint: multiply (i) by $u$.
153
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
1.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1362 views
- $13.00
Related Questions
- Prove that $\lim_{\epsilon \rightarrow 0} \int_{\partial B(x,\epsilon)} \frac{\partial \Phi}{\partial \nu}(y)f(x-y)dy=f(x)$
- Differential equations, question 5
- Ordinary differential equation questions
- Solve the two-way wave equation in terms of $u_0$
- Beginner Differential Equations - Growth Rate Question
- Maxwell's equations and the wave equation
- ODEs: Lipschitz-continuity and an IVP
- Conservative system ODE