Find solutions to the Riemann Problems
i) Find the solution to the Riemann Problem for
$u_t + (u^3)_x = 0$
$U_L = 2$ and $U_R = 1$
ii) Find the solution to the Riemann Problem for
$v_t + 3/2 (v^4)_x = 0$
$V_L = 4$ and $V_R = 1$
iii) Show that $v = u^2$ with u from (i) formally solves (ii). Hint: multiply (i) by $u$.

153
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
1.6K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 742 views
- $13.00
Related Questions
- ODE - Initial Value Problem
- Maxwell's equations and the wave equation
- Beginner Differential Equations - Growth Rate Question
- Show that the following subset Ω of Euclidean space is open
- Mean value formula for the laplace equation on a disk
- Derive the solution $u(x,t)=\frac{x}{\sqrt{4 \pi}} \int_{0}^{t} \frac{1}{(t-s)^{3/2}}e^{\frac{-x^2}{4(t-s)}}g(s) \, ds$ for the heat equation
- Equipartition of energy in the wave equation
- Solve the Riemann Problem