Find solutions to the Riemann Problems
i) Find the solution to the Riemann Problem for
$u_t + (u^3)_x = 0$
$U_L = 2$ and $U_R = 1$
ii) Find the solution to the Riemann Problem for
$v_t + 3/2 (v^4)_x = 0$
$V_L = 4$ and $V_R = 1$
iii) Show that $v = u^2$ with u from (i) formally solves (ii). Hint: multiply (i) by $u$.
153
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
1.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1245 views
- $13.00
Related Questions
- Use the divergence theorem to derive Green's identity
- Show this initial value problem has a unique solution for initial value forall t
- Prove that $\lim_{\epsilon \rightarrow 0} \int_{\partial B(x,\epsilon)} \frac{\partial \Phi}{\partial \nu}(y)f(x-y)dy=f(x)$
- Partial Diff Eq problems
- Optimisation Problem
- Partial Differential Equations
- Show that $\Delta \log (|f(z)|)=0$, where $f(z)$ is an analytic function.
- 10 questions Differential Equations