Does $\sum_{n=2}^{\infty}\frac{\sin n}{n \ln n}$ converge or diverge?
Answer
We use Dirichlet's test (https://en.wikipedia.org/wiki/Dirichlet%27s_test) to show that this infinite series converges. Since $\frac{1}{n \ln n}$ is decreasing for ($n\geq 2$) and bounded, it is enough to show that
\[S_n=\sum_{k=2}^{n}\sin k\]
is bounded. Notice that
\[S_n=\text{Real}(\sum_{k=2}^{n}e^{ik})=\text{Real}(\frac{e^{2i}-e^{(n+1)i}}{1-e^{i}}).\]
Hence
\[S_n \leq |\frac{e^{2i-e^{(n+1)i}}}{1-e^{i}}|=|e^{2i}\frac{1-e^{(n-1)i}}{1-e^{i}}|\leq \frac{2}{|1-e^{i}|}<\infty.\]
Thus it follows from the Dirichlet's test that
\[\sum_{n=2}^{\infty}\frac{\sin n}{n\ln n}\]
is convergenet.

443
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 2680 views
- $8.00
Related Questions
- Vector Sketching
- Evaluate $\int \ln(\sqrt{x+1}+\sqrt{x}) dx$
- Double Integrals, polar coordinates, Stoke's theorem, and Flow line Questions
- Evaluate the surface integral $\iint_{S}F \cdot dn$ over the given surface $S$
- Show that the distance between two nonparallel lines is given by $\frac{|(p_2-p_1)\cdot (a_1\times a_2)|}{|| a_2\times a_1||}$
- Find $a,b,c$ so that $\begin{bmatrix} 0 & 1& 0 \\ 0 & 0 & 1\\ a & b & c \end{bmatrix} $ has the characteristic polynomial $-\lambda^3+4\lambda^2+5\lambda+6=0$
- Decide if the following representations are linear representations.
- [Linear Algebra] Spectrum