Does $\sum_{n=2}^{\infty}\frac{\sin n}{n \ln n}$ converge or diverge?
Answer
We use Dirichlet's test (https://en.wikipedia.org/wiki/Dirichlet%27s_test) to show that this infinite series converges. Since $\frac{1}{n \ln n}$ is decreasing for ($n\geq 2$) and bounded, it is enough to show that
\[S_n=\sum_{k=2}^{n}\sin k\]
is bounded. Notice that
\[S_n=\text{Real}(\sum_{k=2}^{n}e^{ik})=\text{Real}(\frac{e^{2i}-e^{(n+1)i}}{1-e^{i}}).\]
Hence
\[S_n \leq |\frac{e^{2i-e^{(n+1)i}}}{1-e^{i}}|=|e^{2i}\frac{1-e^{(n-1)i}}{1-e^{i}}|\leq \frac{2}{|1-e^{i}|}<\infty.\]
Thus it follows from the Dirichlet's test that
\[\sum_{n=2}^{\infty}\frac{\sin n}{n\ln n}\]
is convergenet.

443
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 2948 views
- $8.00
Related Questions
- Let $H$ be the subset of all 3x3 matrices that satisfy $A^T$ = $-A$. Carefully prove that $H$ is a subspace of $M_{3x3} $ . Then find a basis for $H$.
- Find where this discrete 3D spiral converges in explict terms
- Find $n$ such that $\lim _{x \rightarrow \infty} \frac{1}{x} \ln (\frac{e^{x}+e^{2x}+\dots e^{nx}}{n})=9$
- Sum of column spaces
- Find the general solution of the system of ODE $X'=\begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix} X$
- Find the eigenvalues of $\begin{pmatrix} -1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 3 & -1 \end{pmatrix} $
- Diagonalization of linear transformations
- Advice for proving existence claims