Does $\sum_{n=2}^{\infty}\frac{\sin n}{n \ln n}$ converge or diverge?
Answer
We use Dirichlet's test (https://en.wikipedia.org/wiki/Dirichlet%27s_test) to show that this infinite series converges. Since $\frac{1}{n \ln n}$ is decreasing for ($n\geq 2$) and bounded, it is enough to show that
\[S_n=\sum_{k=2}^{n}\sin k\]
is bounded. Notice that
\[S_n=\text{Real}(\sum_{k=2}^{n}e^{ik})=\text{Real}(\frac{e^{2i}-e^{(n+1)i}}{1-e^{i}}).\]
Hence
\[S_n \leq |\frac{e^{2i-e^{(n+1)i}}}{1-e^{i}}|=|e^{2i}\frac{1-e^{(n-1)i}}{1-e^{i}}|\leq \frac{2}{|1-e^{i}|}<\infty.\]
Thus it follows from the Dirichlet's test that
\[\sum_{n=2}^{\infty}\frac{\sin n}{n\ln n}\]
is convergenet.

443
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 2669 views
- $8.00
Related Questions
- Linear Algebra Help : Consider Two Planes, P1 and P2
- Elementary row reduction for an $n\times n$ matrix
- Linear Algebra - matrices and vectors
- Calculus 3 Challeng problems
- Find the general solution of the system of ODE $X'=\begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix} X$
- Evaluate the surface integral $\iint_{S}F \cdot dn$ over the given surface $S$
- Linear Algebra Assistance: Linear Combinations of Vectors
- Hamming metric isometries