1.10 Finite, Infinite, Countable, and Uncountable Sets

Definition 1.10.1 Let A and B be two sets. We say that A and B have the same cardinality if there exists a bijection from A to B. In such a case, we say that A and B are equivalents and denote $A \sim B$.

We may define a relation, defining that A is related to B if $A \sim B$. We may show that such a relation is reflexive, symmetric, and transitive.

Observe that

- $A \sim A$ since $f: A \rightarrow A$ defined by f(x) = x is a bijection.
- $A \sim B \Rightarrow B \sim A$, since if $f: A \to B$ is a bijection, then $f^{-1}: B \to A$ is a bijection as well.
- $A \sim B$ and $B \sim C \Rightarrow A \sim C$, since if $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijections we have that $h = g \circ f: A \rightarrow C$ is a bijection from A to C.

We recall that for each $n \in \mathbb{N}$ we earlier had denoted:

$$I_n = \{1, 2, \ldots, n\}.$$

Definition 1.10.2 Let *A* be a nonempty set.

- 1. We say that A is finite if $A \sim I_n$, for some $n \in \mathbb{N}$.
- 2. If A is not finite it is said to be infinite.
- 3. We say that A is countable if it is finite or if there exists a bijection from A to \mathbb{N} , that is, $A \sim \mathbb{N}$.
- 4. If A is not countable it is said to be uncountable.

As an example, consider $A = \mathbb{Z}$, the set of integers. We may show that \mathbb{Z} is countable. Consider a bijection $f : \mathbb{N} \to \mathbb{Z}$ given by:

$$f(n) = \begin{cases} n/2, & \text{if } n \text{ is even} \\ -(n-1)/2, & \text{if } n \text{ is odd,} \end{cases}$$
 (1.24)

Clearly such a function is injective and surjective, so that

$$\mathbb{Z} = \{ f(n) \mid n \in \mathbb{N} \} = \{1, 2, 3, 4, \ldots \} \cup \{0, -1, -2, -3, \ldots \}.$$

Hence \mathbb{Z} is countable.

Definition 1.10.3 (Sequence) All function whose domain is \mathbb{N} is said to be a sequence. Thus $f: \mathbb{N} \to A$ is a sequence in A. We also denote $f(n) = x_n$ or the sequence simply by $\{x_n\}$.

Theorem 1.10.4 *Let* A *be countable. Assume that* $E \subset A$ *and that* E *is infinite. Under such hypotheses* E *is countable.*

1 Real Numbers

Proof By hypothesis, A is countable and infinite. Hence A may be expressed by a sequence of distinct elements, since $A \sim \mathbb{N}$, that is, $A = \{x_n\}_{n \in \mathbb{N}}$. Let n_1 be the smallest natural such that $x_{n_1} \in E$. Reasoning inductively, having $n_1 < n_2 < \cdots < n_{k-1}$ define n_k as the smallest integer greater than n_{k-1} such that $x_{n_k} \in E$. Define $f: \mathbb{N} \to E$ by

$$f(k) = x_{n_k}$$
.

Being the elements of $\{x_n\}$ distinct, we have that f is injective. Let us show that f is also surjective. Let $x_j \in E$. Define k_0 as the greatest natural number such that $n_{k_0} < j$. Since $x_j \in E$ we obtain $n_{k_0+1} = j$, that is, $x_j \in \{x_{n_k}\}$, so that $E \subset \{x_{n_k}\}$. Since by definition $\{x_{n_k}\} \subset E$, we obtain $E = \{x_{n_k}\}$, so that f is surjective. The proof is complete.

Definition 1.10.5 Let A be a set of indices such that for each $\alpha \in A$ we associate an unique set denoted by E_{α} . The union of the sets E_{α} we shall denote by S so that

$$S = \bigcup_{\alpha \in A} E_{\alpha}$$
.

Thus $x \in S \Leftrightarrow x \in E_{\alpha}$ for some $\alpha \in A$. If $A = \{1, ..., n\}$, we write

$$S = \cup_{i=1}^n E_i,$$

and if $A = \mathbb{N}$ we write

$$S=\cup_{n=1}^{\infty}E_n.$$

By analogy, the intersection between the sets E_{α} will be denoted by P, that is

$$P = \bigcap_{\alpha \in A} E_{\alpha}$$
.

Thus

$$x \in P \Leftrightarrow x \in E_{\alpha}, \forall \alpha \in A.$$

If $A = \{1, \ldots, n\}$ we write

$$P = \bigcap_{i=1}^n E_i = E_1 \cap E_2 \cap \cdots \cap E_n.$$

If $A = \mathbb{N}$ we write,

$$P = \bigcap_{n=1}^{\infty} E_n.$$

Finally, if $A \cap B = \emptyset$ we say that A and B are disjoint.

Theorem 1.10.6 Let $\{E_n\}$ be a sequence of countable sets. Under such hypotheses, $S = \bigcup_{n=1}^{\infty} E_n$ is countable.

Proof We give just a sketch of the proof. Observe that for each $n \in \mathbb{N}$ E_n is countable, so that we may denote

$$E_n = \{x_{n_k}\}_{k \in \mathbb{N}}.$$

Hence,

$$E_{1} = \{x_{11}, , x_{12}, x_{13}, \cdots \}$$

$$E_{2} = \{x_{21}, , x_{22}, x_{23}, \cdots \}$$

$$E_{3} = \{x_{31}, , x_{32}, x_{33}, \cdots \}$$

$$E_{4} = \cdots \cdots$$

$$\cdots = \cdots \cdots$$

We may pass an arrow through x_{11} and define values for a function $f: \mathbb{N} \to S$ by setting $f(1) = x_{11}$. After that, we may pass a diagonal arrow from x_{21} to x_{12} and define $f(2) = x_{21}$, $f(3) = x_{12}$. We may pass a third arrow through x_{31} , x_{22} , and x_{13} and define $f(4) = x_{31}$, $f(5) = x_{22}$, $f(6) = x_{13}$. Proceeding in this fashion, we continue to pass diagonal arrows, associating a natural number through f, as an element of the table is touched by a concerned arrow. Observe that to each element $S = \bigcup_{n=1}^{\infty} E_n$ will be associated a natural number (Fig. 1.6).

If there exist repeated elements in the table above defined by S, we may infer that f will be a bijection between S and a subset T of \mathbb{N} . Hence, from the last theorem:

$$\mathbb{N} \sim T \sim S$$
.

Thus

$$\mathbb{N} \sim S$$
,

that is, $S = \bigcup_{n=1}^{\infty} E_n$ is countable.

Theorem 1.10.7 Let A be a countable set. Then, $A \times A$ is a countable set.

Proof The case in which A if finite is immediate. Thus assume A is infinite. Since A is countable we may denote $A = \{x_n\}$. Let $n \in \mathbb{N}$. Define $E_n = \{(x_n, x_m) \mid m \in \mathbb{N}\}$. Consider a bijection $f : E_n \to A$ defined by $f(x_n, x_m) = x_m$. Thus $E_n \sim A \sim \mathbb{N}$. Therefore, $E_n \sim \mathbb{N}$, that is E_n is countable, $\forall n \in \mathbb{N}$. Since

$$A \times A = \cup_{n=1}^{\infty} E_n$$

1 Real Numbers

Fig. 1.6 Countability of a countable union of countable sets

from the last theorem we may conclude that $A \times A$ is countable. The proof is complete.

Exercise 1.10.8 Show that if A and B are countable sets, then so is $A \times B$.

Exercise 1.10.9 Show that if A is countable and $n \in \mathbb{N}$, then $A^n = A \times A \times \cdots \times A$ (n times) is also countable, where we denote $A^2 = A \times A$ and $A^n = A^{n-1} \times A$. Hint: Use induction.

Theorem 1.10.10 *The rational set* \mathbb{Q} *is countable.*

Proof We have already proven that \mathbb{Z} is countable and therefore from Theorem 1.10.7, $\mathbb{Z} \times \mathbb{Z}$ is countable. Consider the subset $A \subset \mathbb{Z} \times \mathbb{Z}$ defined by:

$$A = \{(m, n) \in \mathbb{Z} \times \mathbb{N} \mid g.c.d.(m, n) = 1\}.$$

Thus, since A is a subset of a countable set, it is also countable. Consider the function $f: A \to \mathbb{Q}$ defined by

$$f(m,n) = m/n$$
.

Thus, f is a bijection from A to \mathbb{Q} . Therefore, $\mathbb{N} \sim A \sim \mathbb{Q}$, that is,

$$\mathbb{N} \sim \mathbb{O}$$

so that \mathbb{Q} is countable. The proof is complete.

Theorem 1.10.11 The set A of all sequences whose elements are just 0 or 1 is uncountable.

Proof Suppose, to obtain contradiction that A is countable. Hence, we may write $A = \{S_n\}_{n \in \mathbb{N}}$ where $S_n = \{s_{nk}\}_{k \in \mathbb{N}}$ and where $s_{nk} = 0$ or $s_{nk} = 1$, $\forall k, n \in \mathbb{N}$. Define the sequence $\tilde{S} = \{\tilde{s}_k\}$ by

$$\tilde{s}_k = \begin{cases} 1, & \text{if } s_{kk} = 0, \\ 0, & \text{if } s_{kk} = 1. \end{cases}$$
 (1.25)

Thus $\tilde{S} \neq S_n$, $\forall n \in \mathbb{N}$. Hence, $\tilde{S} \notin A$. However, by its definition $\tilde{S} \in A$. We have got a contradiction. The proof is complete.

Corollary 1.10.12 \mathbb{R} *is uncountable.*

Proof Consider the interval [0, 0.2] and the decimal expansions of the form 0. $x_1 \ x_2 \cdots x_k \cdots$ where $x_k = 0$ or $x_k = 1$, $\forall k \in \mathbb{N}$. From the last theorem the collection of such numbers is uncountable. Therefore the interval [0, 0.2] is uncountable so that $\mathbb{R} \supset [0, 0.2]$ is uncountable.

Exercise 1.10.13 Show that $\mathbb{R} \setminus \mathbb{Q}$, the set of irrationals, is uncountable.

Exercise 1.10.14 A complex number z is said to be algebraic if there exist $a_0, a_1, \ldots, a_n \in \mathbb{Z}$ not all zero, such that

$$a_0z^n + a_1z^{n-1} + \dots + a_{n-1}z + a_n = 0.$$

Prove that the set of algebraic numbers is countable.

Exercise 1.10.15 Prove by induction that,

1.

$$1^{2} + 3^{2} + 5^{2} + \dots + (2n - 1)^{2} = \frac{n(2n + 1)(2n - 1)}{3}, \ \forall n \in \mathbb{N},$$

2.

$$1 \cdot 2^{1} + 2 \cdot 2^{2} + 3 \cdot 2^{3} + \dots + n \cdot 2^{n} = (n-1)2^{n+1} + 2 \ \forall n \in \mathbb{N},$$

3.

$$\frac{1}{1\cdot 4} + \frac{1}{4\cdot 7} + \frac{1}{7\cdot 10} + \dots + \frac{1}{(3n-2)\cdot (3n+1)} = \frac{n}{3n+1}, \ \forall n \in \mathbb{N},$$

4.

$$n^2 \le n!, \ \forall n \ge 4,$$

46 1 Real Numbers

5.

$$2^n > n^2, \ \forall n \ge 5,$$

6.

$$1 + x + x^2 + \dots + x^n = \frac{1 - x^{n+1}}{1 - x}, \ \forall n \in \mathbb{N}, \ x \in \mathbb{R}, \text{ such that } x \neq 1,$$

Exercise 1.10.16 Prove by induction that if A and B are square matrices such that

$$AB = BA$$
,

then

$$AB^n = B^n A, \ \forall n \in \mathbb{N}.$$

Exercise 1.10.17 Let $f : \mathbb{N} \to \mathbb{N}$ be a function such that

$$f(n+m) = f(n) + f(m), \ \forall m, n \in \mathbb{N}.$$

1. Prove that

$$f(na) = nf(a), \ \forall n \in \mathbb{N}.$$

Hint: Fix $a \in \mathbb{N}$ and define

$$A = \{ n \in \mathbb{N} : f(na) = nf(a) \},$$

and prove by induction that

$$A = \mathbb{N}$$
.

2. Prove that there exists $b \in \mathbb{N}$ such that

$$f(n) = bn, \ \forall n \in \mathbb{N}.$$

Exercise 1.10.18 Let $x, y \in \mathbb{R}$ be such that

$$x < y + \varepsilon, \ \forall \varepsilon > 0.$$

Prove formally that

$$x \leq y$$
.

Hint: Suppose, to obtain contradiction, that x > y.

Exercise 1.10.19 Let $a, b \in \mathbb{R}$ be such that 0 < a < b. Prove by induction that

$$0 < a^n < b^n$$
, $\forall n \in \mathbb{N}$.

Exercise 1.10.20 Let $a \in \mathbb{R}$ be such that 0 < a < 1.

Let $\varepsilon > 0$. Prove that there exists $n_0 \in \mathbb{N}$ such that

$$0 < a^{n_0} < \varepsilon$$
.

Show also that if $n > n_0$, then

$$0 < a^n < a^{n_0} < \varepsilon.$$

Exercise 1.10.21 Let $K \in \mathbb{R}$ be such that K > 0. Let $a \in \mathbb{R}$ be such that a > 1. Prove formally that there exists $n_0 \in \mathbb{N}$ such that if $n > n_0$, then

$$a^n > K$$
.

Exercise 1.10.22 Let $A, B \subset \mathbb{R}$ be nonempty upper bounded sets. Define

$$A + B = \{x + y : x \in A \text{ and } y \in B\}.$$

Show that A + B is upper bounded and

$$\sup(A+B) = \sup A + \sup B$$
.

Exercise 1.10.23 Let $X \subset \mathbb{R}$. A function $f: X \to \mathbb{R}$ is said to be upper bounded if its range

$$f(X) = \{ f(x) : x \in X \},$$

is upper bounded. In such a case we define the supremum of f on X by

$$\sup f = \sup \{ f(x) : x \in X \}.$$

Given two functions $f, g: X \to \mathbb{R}$, the sum $(f + g): X \to \mathbb{R}$ is defined by

$$(f+g)(x) = f(x) + g(x), \ \forall x \in X.$$

48 1 Real Numbers

Prove that if $f, g: X \to \mathbb{R}$ are upper bounded, then so is f + g and also prove that

$$\sup(f+g) \le \sup f + \sup g.$$

Finally, give an example for which the strict inequality is valid.

Exercise 1.10.24 Let $A \subset \mathbb{R}$ be a nonempty bounded set. Define -A by

$$-A = \{-x : x \in A\}.$$

Prove that

$$\inf A = -\sup(-A)$$
.

Exercise 1.10.25 Let $A \subset \mathbb{R}$ be a nonempty bounded set and let c > 0. Define cA by

$$cA = \{cx : x \in A\}.$$

show that

$$\sup(cA) = c \sup A$$
,

and

$$\inf(cA) = c\inf A$$
.

Exercise 1.10.26 Let $A, B \subset \mathbb{R}^+ = [0, +\infty)$ be nonempty bounded sets. Define

$$A \cdot B = \{xy : x \in A \text{ and } y \in B\}.$$

Prove that

$$\sup(A \cdot B) = \sup A \, \sup B$$

and

$$\inf(A \cdot B) = \inf A \inf B$$
.

Exercise 1.10.27 Verify if the sets below indicated are countable or uncountable. Please justify your answers.

1. The set of all sequences having only 0 and 1 entries, with exactly 3 entries equal to 1.

2. For $k \in \mathbb{N}$, the set of all sequences having only 0 and 1 entries, with at most k entries equal to 1.

3.

$$\mathscr{A} = \{\{a_n\} : a_n \in \mathbb{N} \cup \{0\}, \text{ such that } a_n = 0, \ \forall n \in \mathbb{N},$$
 except for a finite number of $n's\}.$

4.

$$\mathscr{B} = \{\{a_n\} : a_n \in \mathbb{N} \text{ and } a_n \ge a_{n+1}, \forall n \in \mathbb{N}\}.$$

5.

$$\mathscr{C} = \{\{a_n\} : a_n \text{ is prime } \forall n \in \mathbb{N}\}.$$

6.

$$\mathscr{D} = \{\{a_n\} : a_n \in \mathbb{N} \text{ and } a_{n+1} \text{ is a multiple of } a_n, \forall n \in \mathbb{N}\}.$$

7.

$$\mathscr{E} = \{\{a_n\} : a_n \in \mathbb{N} \text{ and } a_{n+1} \text{ is a divisor of } a_n, \ \forall n \in \mathbb{N}\}.$$

- 8. The set of all polynomials in x with rational coefficients.
- 9. The set of all power series $\sum_{n=0}^{\infty} a_n x^n$, such that $a_n \in \mathbb{Z}, \ \forall n \in \mathbb{N} \cup \{0\}$.

Exercise 1.10.28 Prove that if a set B is countable and there exists an injective function

$$f:A\to B$$

then A is countable.

Exercise 1.10.29 Let A be a countable set and B be a finite set. Constructing a bijection between \mathbb{N} and $A \cup B$, show that $A \cup B$ is countable.