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1.10 Finite, Infinite, Countable, and Uncountable Sets

Definition 1.10.1 Let A and B be two sets. We say that A and B have the same
cardinality if there exists a bijection from A to B. In such a case, we say that A and
B are equivalents and denote A ~ B.

We may define a relation, defining that A is related to B if A ~ B. We may show
that such a relation is reflexive, symmetric, and transitive.
Observe that

* A~ Asince f : A — Adefined by f(x) = x is a bijection.

e« A~ B = B~ A,sinceif f : A — B isabijection, then f~! : B > Aisa
bijection as well.

e A~BandB ~C = A ~C(C,sinceif f : A - Bandg : B — C are
bijections we have thath = go f : A — C is a bijection from A to C.

We recall that for each n € N we earlier had denoted:
I, ={1,2,...,n}.

Definition 1.10.2 Let A be a nonempty set.

1. We say that A is finite if A ~ [,, for some n € N.

2. If A is not finite it is said to be infinite.

3. We say that A is countable if it is finite or if there exists a bijection from A to N,
that is, A ~ N.

4. If A is not countable it is said to be uncountable.

As an example, consider A = Z, the set of integers. We may show that Z is

countable. Consider a bijection f : N — Z given by:

n/2, if n is even
fn) = (1.24)
—(n —1)/2, ifnisodd,

Clearly such a function is injective and surjective, so that
Z={f(n)|neN}={1,2,3,4,....} U{0, -1, =2, -3, ...}.

Hence Z is countable.

Definition 1.10.3 (Sequence) All function whose domain is N is said to be a
sequence. Thus f : N — A is a sequence in A. We also denote f(n) = x, or
the sequence simply by {x,}.

Theorem 1.10.4 Let A be countable. Assume that E C A and that E is infinite.
Under such hypotheses E is countable.
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Proof By hypothesis, A is countable and infinite. Hence A may be expressed by a
sequence of distinct elements, since A ~ N, that is, A = {x,},en. Let n| be the
smallest natural such that x,, € E. Reasoning inductively, havingn| <np; <--- <
ni—1 define ny as the smallest integer greater than ny_; such that x,, € E. Define
f:N— Eby

f(k) = Xny -

Being the elements of{x,} distinct, we have that f is injective. Let us show that f
is also surjective. Let x; € E. Define ko as the greatest natural number such that
ng, < j.Since x; € E we obtain ny,11 = j, thatis, x; € {x,,}, sothat £ C {x,, }.
Since by definition {x,,} C E, we obtain £ = {x,,}, so that f is surjective. The
proof is complete.

Definition 1.10.5 Let A be a set of indices such that for each « € A we associate
an unique set denoted by E,. The union of the sets E, we shall denote by S so that

S = UgeaEqy.

Thusx € S x € E, forsomea € A.If A ={1,...,n}, we write
S =VU'_|Ei,

and if A = N we write
S=U2 E,.

By analogy, the intersection between the sets E, will be denoted by P, that is

P =NgeaEy.
Thus

xeP & xekEy YaeA.
IfA={1,...,n} we write
P=nN_Ei=E NEyN---NE,.

If A = N we write,

P =N E,.

Finally, if AN B = () we say that A and B are disjoint.
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Theorem 1.10.6 Let {E,} be a sequence of countable sets. Under such hypotheses,
S = U | E, is countable.

Proof We give just a sketch of the proof. Observe that for each n € N E, is
countable, so that we may denote

E, = {xnk JkeN.

Hence,
Ey = {x11, , X12, X13, -}
Ey = {x21, , x22, X23, ---}
E3 = {x31, ,x32, x33, -}
Eqm oo oo iee e e

We may pass an arrow through x| and define values for a function f : N — § by
setting f(1) = x1;1. After that, we may pass a diagonal arrow from x31 to x12 and
define f(2) = x21, f(3) = x12. We may pass a third arrow through x31, x22, and
x13 and define f(4) = x31, f(5) = x22, f(6) = x13. Proceeding in this fashion,
we continue to pass diagonal arrows, associating a natural number through f, as an
element of the table is touched by a concerned arrow. Observe that to each element
§ = U2 | E, will be associated a natural number (Fig. 1.6).

If there exist repeated elements in the table above defined by S, we may infer that
f will be a bijection between S and a subset 7" of N. Hence, from the last theorem:

N~T~S§,

Thus

that is, § = U | E,, is countable.
Theorem 1.10.7 Let A be a countable set. Then, A x A is a countable set.

Proof The case in which A if finite is immediate. Thus assume A is infinite. Since A
is countable we may denote A = {x,,}. Letn € N. Define E,, = {(x,,, x;,) | m € N}.
Consider a bijection f : E, — A defined by f(x,, x;) = xp,. Thus E, ~ A ~ N.
Therefore, E, ~ N, that is E,, is countable, Vn € N. Since
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Fig. 1.6 Countability of a countable union of countable sets

from the last theorem we may conclude that A x A is countable.
The proof is complete.

Exercise 1.10.8 Show that if A and B are countable sets, then sois A x B.

Exercise 1.10.9 Show that if A is countable andn € N,then A" = AxAx---x A
(n times) is also countable, where we denote A2 = A x A and A" = A"~ ! x A.
Hint: Use induction.

Theorem 1.10.10 The rational set QQ is countable.

Proof We have already proven that Z is countable and therefore from Theo-
rem 1.10.7, Z x Z is countable. Consider the subset A C Z x Z defined by:

A={(m,n) e ZxN|g.cd.(m,n) =1}

Thus, since A is a subset of a countable set, it is also countable. Consider the
function f : A — Q defined by

f(m,n) =m/n.

Thus, f is a bijection from A to Q. Therefore, N ~ A ~ Q, that is,
N~Q

so that QQ is countable. The proof is complete.
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Theorem 1.10.11 The set A of all sequences whose elements are just 0 or 1 is
uncountable.

Proof Suppose, to obtain contradiction that A is countable. Hence, we may write
A = {Sy}nen where S, = {snx}ren and where s, = OQors,, = 1, V k,n € N.
Define the sequence S = {sx} by

1, if spr =0,
Sk = (1.25)
0, ifsgr = 1.

Thus S % S,,Vn € N. Hence, S ¢ A. However, by its definition S € A. We have
got a contradiction. The proof is complete.

Corollary 1.10.12 R is uncountable.

Proof Consider the interval [0, 0.2] and the decimal expansions of the form
0. x;{ xp-+--x;--- where x; = Oor x; = 1, Vk € N. From the last theorem
the collection of such numbers is uncountable. Therefore the interval [0, 0.2] is
uncountable so that R D [0, 0.2] is uncountable.

Exercise 1.10.13 Show that R \ Q, the set of irrationals, is uncountable.

Exercise 1.10.14 A complex number z is said to be algebraic if there exist
ap, di, ..., a, € Z not all zero, such that

1

a" + a1+ -+ ay—1z+a, =0.

Prove that the set of algebraic numbers is countable.

Exercise 1.10.15 Prove by induction that,

1.
m+1)2n —1
12+32+52+...+(2n—1)2:”(”+;(” ),VneN,
2.
1.2'4+2.2243. 22+ 402" = =1D2"""+2Vn eN,
3.
LI I SR ! " VneN
— R n R
1-4 4.7 " 7-10 Gn—2)-Gn+1) 3n+1
4.

n“ <n! Vn >4,
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5.
2" > n?, Vn >S5,
6.
]_xn—l—l
1—|—x—|—x2+---—|—x”=1—, Vn € N, x € R, suchthat x # 1,
—Xx

Exercise 1.10.16 Prove by induction that if A and B are square matrices such that
AB = BA,
then
AB" = B"A, Vn € N.
Exercise 1.10.17 Let f : N — N be a function such that

fm+m)= f(n)+ f(m), Ym,n € N.

1. Prove that
f(na) =nf(a), Vn € N.
Hint: Fix a € N and define
A={neN : f(na) =nf(a)},
and prove by induction that
A=N.
2. Prove that there exists b € N such that
f(n) =bn, VYn € N.

Exercise 1.10.18 Let x, y € R be such that

x<y+e, Ve>0.
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Prove formally that
x <y.

Hint: Suppose, to obtain contradiction, that x > y.

Exercise 1.10.19 Leta, b € R be such that 0 < a < b. Prove by induction that
0<a®* <?d", ¥YneN.

Exercise 1.10.20 Leta € Rbesuchthat0) <a < 1.
Let ¢ > 0. Prove that there exists ng € N such that

0<ad" <e.
Show also that if n > ng, then
0<dad" <ad® <e.

Exercise 1.10.21 Let K € R be such that K > 0. Let a € R be such thata > 1.
Prove formally that there exists ng € N such that if n > ng, then

a" > K.
Exercise 1.10.22 Let A, B C R be nonempty upper bounded sets. Define
A+B={x+y : xeAandy € B}.
Show that A + B is upper bounded and
sup(A + B) =sup A + sup B.

Exercise 1.10.23 Let X C R. A function f : X — R is said to be upper bounded
if its range

fX)={fx) : x € X},

is upper bounded. In such a case we define the supremum of f on X by

sup f =sup{f(x) : x € X}

Given two functions f, g : X — R, the sum (f + g) : X — R is defined by

(f+8x) = fx)+gkx), Vx € X.
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Prove that if f, g : X — R are upper bounded, then so is f + g and also prove
that

sup(f 4+ g) <sup f +supg.

Finally, give an example for which the strict inequality is valid.

Exercise 1.10.24 Let A C R be a nonempty bounded set. Define —A by
—A={—x : x € A}
Prove that
inf A = —sup(—A).

Exercise 1.10.25 Let A C R be a nonempty bounded set and let ¢ > 0.
Define cA by

cA={cx : x € A}.
show that
sup(cA) = csupA,
and
inf(cA) = cinf A.

Exercise 1.10.26 Let A, B C RT = [0, +00) be nonempty bounded sets.
Define

A-B={xy : xe Aand y € B}.
Prove that
sup(A - B) =sup A sup B
and
inf(A - B) =inf A inf B.

Exercise 1.10.27 Verify if the sets below indicated are countable or uncountable.
Please justify your answers.

1. The set of all sequences having only 0 and 1 entries, with exactly 3 entries equal
to 1.
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2. For k € N, the set of all sequences having only 0 and 1 entries, with at most k
entries equal to 1.

3.
o = {{a,} : a, e NU{0}, suchthata, =0, Vn € N,

except for a finite number of n's}.

4.
# = {{an} : a, e Nand a,, > a,+1,Vn € N}.

5.

¢ = {{an} : apisprime Vn € N}.
6.

2 = {{a,} : a, € N and a4 is a multiple of a,, Vn € N}.

7.

& = {{a,} : a, € Nand a4 is a divisor of a,, Vn € N}.

8. The set of all polynomials in x with rational coefficients.
9. The set of all power series Z;o:O ayx", such that a, € Z, Vn € NU {0}.

Exercise 1.10.28 Prove that if a set B is countable and there exists an injective
function

f:A— B,

then A is countable.

Exercise 1.10.29 Let A be a countable set and B be a finite set. Constructing a
bijection between N and A U B, show that A U B is countable.
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