# Constructing Monotonic Sequences Converging to an Accumulation Point in a Subset of $\mathbb{R}$

Mona Vinci

39

The answer is accepted.

Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.

- accepted
- 243 views
- $10.00

### Related Questions

- Assume there is no $x ∈ R$ such that $f(x) = f'(x) = 0$. Show that $$S =\{x: 0≤x≤1,f(x)=0\}$$ is finite.
- Can we use the delta-ep def of a limit to find a limiting value?
- Measure Theory and the Hahn Decomposition Theorem
- [Real Analysis] Show that $B$ is countable.
- A lower bound on infinite sum of exponential functions (corrected version)
- A lower bound for an exponential series
- Let $f\in C (\mathbb{R})$ and $f_n=\frac{1}{n}\sum\limits_{k=0}^{n-1} f(x+\frac{k}{n})$. Prove that $f_n$ converges uniformly on every finite interval.
- Subsets and Sigma Algebras: Proving the Equality of Generated Sigma Algebras