Constructing Monotonic Sequences Converging to an Accumulation Point in a Subset of $\mathbb{R}$
Let a be a set accumulation point $A$ subset of $\mathbb{R}$. Show that there is either an increasing sequence or a decreasing sequence of points $x_n$ in A with $\lim_{n\rightarrow \infty} x_n=a$.
Mona Vinci
39
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- accepted
- 378 views
- $10.00
Related Questions
- real analysis
- real analysis
- Find $\lim\limits _{n\rightarrow \infty} n^2 \prod\limits_{k=1}^{n} (\frac{1}{k^2}+\frac{1}{n^2})^{\frac{1}{n}}$
- real analysis
- [Real Analysis] Show that $B$ is countable.
- real analysis
- Generalization of the Banach fixed point theorem
- Prove the uniqueness of a sequence using a norm inequality.