Constructing Monotonic Sequences Converging to an Accumulation Point in a Subset of $\mathbb{R}$
Let a be a set accumulation point $A$ subset of $\mathbb{R}$. Show that there is either an increasing sequence or a decreasing sequence of points $x_n$ in A with $\lim_{n\rightarrow \infty} x_n=a$.
39
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- accepted
- 1154 views
- $10.00
Related Questions
- Mathematical modeling
- Assume there is no $x ∈ R$ such that $f(x) = f'(x) = 0$. Show that $$S =\{x: 0≤x≤1,f(x)=0\}$$ is finite.
- real analysis
- Rouche’s Theorem applied to the complex valued function $f(z) = z^6 + \cos z$
- Studying the graph of this function
- Prove that $\int_0^1 \left| \frac{f''(x)}{f(x)} \right| dx \geq 4$, under the given conditions on $f(x)$
- Find $\lim\limits _{n\rightarrow \infty} n^2 \prod\limits_{k=1}^{n} (\frac{1}{k^2}+\frac{1}{n^2})^{\frac{1}{n}}$
- Calculating P values from data.