Matchmaticians
Home How it works Log in Sign up
Matchmaticians
  • Home
  • Search
  • How it works
  • Ask Question
  • Tags
  • Support
  • Affiliate Program
  • Log in
  • Sign up

Constructing Monotonic Sequences Converging to an Accumulation Point in a Subset of $\mathbb{R}$

Let a be a set accumulation point $A$ subset of $\mathbb{R}$. Show that there is either an increasing sequence or a decreasing sequence of points $x_n$ in A with $\lim_{n\rightarrow \infty} x_n=a$.

Real Analysis Limits
Mona Vinci Mona Vinci
39
Report
  • Share on:
The answer is accepted.
Join Matchmaticians Affiliate Marketing Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
  • accepted
  • 490 views
  • $10.00

Related Questions

  • Convergence and Integrability of Function Series in Measure Spaces and Applications to Series Expansion Integrals
  • real analysis
  • How do we take the mean of a mathematical function using statistics?
  • Prove the uniqueness of a sequence using a norm inequality.
  • [Real Analysis] Show that the set $A$ is uncountable. Use this result to show that ${\displaystyle\mathbb {R}}$ is uncountable.
  • Math and graph representing a competitive struggle between competitors with a fixed  number of supporters.
  • True-False real analysis questions
  • Compute  $\lim\limits_{x \rightarrow 0} \frac{1-\frac{1}{2}x^2-\cos(\frac{x}{1-x^2})}{x^4}$
Home
Support
Ask
Log in
  • About
  • About Us
  • How it works
  • Review Process
  • matchmaticians
  • Privacy Policy
  • Terms of Use
  • Affiliate Program
  • Questions
  • Newest
  • Featured
  • Unanswered
  • Contact
  • Help & Support Request
  • Give Us Feedback

Get the Matchmaticians app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store Get Matchmaticians on Google Play
Copyright © 2019 - 2025 Matchmaticians LLC - All Rights Reserved

Search

Search Enter a search term to find results in questions