Compute $\lim\limits_{x \rightarrow 0} \frac{1-\frac{1}{2}x^2-\cos(\frac{x}{1-x^2})}{x^4}$
Compute
$$\lim\limits_{x \rightarrow 0} \frac{1-\frac{1}{2}x^2-\cos(\frac{x}{1-x^2})}{x^4}$$
23
Answer
The idea is to use Taylor series. We have
\[\frac{1}{1-x^2}=1+x^2+x^4+x^6\dots.\]
So
\[\frac{x}{1-x^2}=x+x^3+x^5+x^7\dots .\]
Also
\[\cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}- \dots,\]
and hence
\[\cos (\frac{x}{1-x^2})=1- \frac{(x+x^3+x^5+x^7\dots)^2}{2}+\frac{(x+x^3+x^5+x^7\dots)^4}{4!}+\dots\]
\[=1-\frac{x^2+2x^4+\dots}{2}+\frac{x^4+\dots}{4!}\]
\[=1-\frac{x^2}{2}+(-1+\frac{1}{4!})x^4+\dots =1-\frac{x^2}{2}-\frac{23}{24}x^4+\dots.\]
Thus
\[1-\frac{1}{2}x^2-\cos (\frac{x}{1-x^2})=\frac{23}{24}x^4+\text{Higher Order Terms}.\]
Therefore
\[\lim_{x\rightarrow 0} \frac{1-\frac{1}{2}x^2-\cos (\frac{x}{1-x^2})}{x^4}=\frac{23}{24}.\]

443
-
Thank you David :)
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 2229 views
- $3.00
Related Questions
- Evaluate $\int ...\int_{R_n}dV_n(x_1^2 + x_2^2 + ... + x_n^2)$ , where $n$ and $R_n$ is defined in the body of this question.
- Create a Rotation Matrix for 3 point x,y vectors
- Show that the MLE for $\sum_{i=1}^{n}\left(\ln{2x_i} - 2\ln{\lambda} - \left(\frac{x_i}{\lambda}\right)^2\right)$ is $\hat{\lambda} = \sqrt{\sum_{i=1}^{n}\frac{x_i^2}{n}}$.
- taking business calc and prin of finance class should i buy calculator in body
- Evaluate $\int \sqrt{\tan x} dx$
- Derivative question
- Find the derivative of $f(x)=\int_{\ln x}^{\sin x} \cos u du$
- Compute the curl of $F=(x^2-\sin (xy), z-cox(y), e^{xy} )$