Compute $\lim\limits_{x \rightarrow 0} \frac{1-\frac{1}{2}x^2-\cos(\frac{x}{1-x^2})}{x^4}$
Compute
$$\lim\limits_{x \rightarrow 0} \frac{1-\frac{1}{2}x^2-\cos(\frac{x}{1-x^2})}{x^4}$$
23
Answer
The idea is to use Taylor series. We have
\[\frac{1}{1-x^2}=1+x^2+x^4+x^6\dots.\]
So
\[\frac{x}{1-x^2}=x+x^3+x^5+x^7\dots .\]
Also
\[\cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}- \dots,\]
and hence
\[\cos (\frac{x}{1-x^2})=1- \frac{(x+x^3+x^5+x^7\dots)^2}{2}+\frac{(x+x^3+x^5+x^7\dots)^4}{4!}+\dots\]
\[=1-\frac{x^2+2x^4+\dots}{2}+\frac{x^4+\dots}{4!}\]
\[=1-\frac{x^2}{2}+(-1+\frac{1}{4!})x^4+\dots =1-\frac{x^2}{2}-\frac{23}{24}x^4+\dots.\]
Thus
\[1-\frac{1}{2}x^2-\cos (\frac{x}{1-x^2})=\frac{23}{24}x^4+\text{Higher Order Terms}.\]
Therefore
\[\lim_{x\rightarrow 0} \frac{1-\frac{1}{2}x^2-\cos (\frac{x}{1-x^2})}{x^4}=\frac{23}{24}.\]

443
-
Thank you David :)
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 2084 views
- $3.00
Related Questions
- Extremal values/asymptotes
- Why does $ \sum\limits_{n=1}^{\infty } 2^{2n} \times \frac{(n!)^2}{n(2n+1)(2n)!} =2 $ ?
- Limits : $x^{-1} \sin(x) $ as x -> 0 and $\tfrac{\ln(x)}{1-x}$ as x-> 0
- Is $\int_0^1 \frac{\cos x}{x \sin^2 x}dx$ divergent or convergent?
- Is $\int_1^{\infty}\frac{x+\sqrt{x}+\sin x}{x^2-x+1}dx$ convergent?
- Exercise 4.33 from Spivak's Calculus on Manifolds.
- Create a rational function, g(x) that has the following properties.
- < Derivative of a periodic function.