Evaluate $\int ...\int_{R_n}dV_n(x_1^2 + x_2^2 + ... + x_n^2)$ , where $n$ and $R_n$ is defined in the body of this question.
Hello. I am confused about how to solve the following integral. I see that $n$ is a natural number so my initial thought was to find some sort of recurrence relation which yields the $n^{th}$ integral, but I'm unsure. Can somebody help me?
Let n be a positive integer. Evaluate $\int ...\int_{R_n}dV_n(x_1^2 + x_2^2 + ... + x_n^2)$ , where $R_n = \{(x_1,x_2,...,x_n) \in \mathcal{R}^n : 0 \leq x_i \leq 1, 1 \leq i \leq n\}$.
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
Blue
167
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 324 views
- $15.00
Related Questions
- Gauss's Theorem
- Double, Triple, and Change in Variables of Integrals Problems
- Calculate the following, if it exists: $\int_{0}^{1} x^a(lnx)^mdx$ , where $a > -1$ and $m$ is a nonnegative integer.
- Prove that $\lim_{n\rightarrow \infty} \int_{[0,1]^n}\frac{|x|}{\sqrt{n}}=\frac{1}{\sqrt{3}}$
- How to parameterize an equation with 3 variables
- Multivariable Calculus Problem Set
- Please answer the attached question about Riemann integrals
- How do you prove integration gives the area under a curve?