Use Rouche’s Theorem to show that all roots of $z ^6 + (1 + i)z + 1 = 0$ lines inside the annulus $ \frac{1}{2} \leq |z| \leq \frac{5}{4}$
Answer
Rouche’s Theorem states that if $f(z)$ and $g(z)$ are both analytic inside and on the closed contour $C$, and if $|g(z)| < |f(z)|$ on $C$ then $f(z)$ and $f(z)+g(z)$ have the same number of zeros inside $C$.
i) Let $f(z) = 1, g(z) = z^6 + (1 + i)z$. Then for $|z| = 1/2$
$|g(z)| ≤ ( 1/2 )^ 6 + 1/2 \sqrt{2} < 1 = |f(z)|$.
Since f(z) has no zeros inside $|z| = 1/2$, and so $z^6 + (1 + i)z+1=f(z) + g(z)$ has no zero inside $|z| = 1/2$ .
ii) Let $f(z) = z^6$ , $g(z) = (1 + i)z + 1$. Then for $|z| = 5/4$ ,
$ |g(z)| ≤ \sqrt{2}(5/4) + 1 ≈ 2.77$ < |f(z)| = ( 5/4 )^6 ≈ 3.81$.
Since $f(z)$ has six zeros inside $|z| = 5/4$, and so $z^6 + (1 + i)z+1=f(z) + g(z)$ has all its six zeros inside $|z| = 5/4$.
Erdos
4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1191 views
- $10.00
Related Questions
- Evaluate $\int \frac{x^5}{\sqrt{x^2+2}}dx$
- Write a Proof
- Find and simplify quotient
- Is the infinite series $\sum_{n=1}^{\infty}\frac{1}{n \ln n}$ convergent or divergent?
- Improper integral convergence
- Compute $\lim\limits_{x \rightarrow 0} \frac{1-\frac{1}{2}x^2-\cos(\frac{x}{1-x^2})}{x^4}$
- Solution to Stewart Calculus
- Donald is 6 years older than Sophia. In 4 years the sum of their ages will be 74. How old is Donald now?