Find a general solution for the lengths of the sides of the rectangular parallelepiped with the
largest volume that can be inscribed in the following ellipsoid
Find a general solution for the lengths of the sides of the rectangular parallelepiped with the
largest volume that can be inscribed in the ellipsoid defined by $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$, where a, b, and c are positive real constants. Definitions: A parallelepiped is a three dimensional object with 6 sides, all of which are parallelograms; inscribed means that the boundaries touch but do not cross.
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
Kav10
1.9K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 467 views
- $7.00
Related Questions
- Can enough pizza dough be made to cover the surface of the earth?
- Gauss's Theorem
- Solve only for the multiple choice part, the answer for the first box is 0
- Create a rational function, g(x) that has the following properties.
- Application of Integrals
- Integral of $\arctan x$
- Custom Solutions to Stewart Calculus Problems, 9th Edition
- Prove that $\int_{-\infty}^{\infty}\frac{\cos ax}{x^4+1}dx=\frac{\pi}{2}e^{-\frac{a}{\sqrt{2}}}(\cos \frac{a}{\sqrt{2}}+\sin \frac{a}{\sqrt{2}} )$