Find a general solution for the lengths of the sides of the rectangular parallelepiped with the
largest volume that can be inscribed in the following ellipsoid
Find a general solution for the lengths of the sides of the rectangular parallelepiped with the
largest volume that can be inscribed in the ellipsoid defined by $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$, where a, b, and c are positive real constants. Definitions: A parallelepiped is a three dimensional object with 6 sides, all of which are parallelograms; inscribed means that the boundaries touch but do not cross.
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
2K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 594 views
- $7.00
Related Questions
- Calculus word problem
- Calculus problems on improper integrals
- Need help with finding equation of the plane containing the line and point. Given the symmetric equation.
- Are my answers correct
- Recursive square root sequence
- Why does $ \sum\limits_{n=1}^{\infty } 2^{2n} \times \frac{(n!)^2}{n(2n+1)(2n)!} =2 $ ?
- Optimization problem
- Not sure what I'm doing wrong