Find a general solution for the lengths of the sides of the rectangular parallelepiped with the
largest volume that can be inscribed in the following ellipsoid

Find a general solution for the lengths of the sides of the rectangular parallelepiped with the
largest volume that can be inscribed in the ellipsoid defined by $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$, where a, b, and c are positive real constants. Definitions: A parallelepiped is a three dimensional object with 6 sides, all of which are parallelograms; inscribed means that the boundaries touch but do not cross.

Answer

Answers can only be viewed under the following conditions:
  1. The questioner was satisfied with and accepted the answer, or
  2. The answer was evaluated as being 100% correct by the judge.
View the answer

1 Attachment

The answer is accepted.
Join Matchmaticians Affiliate Marketing Program to earn up to a 50% commission on every question that your affiliated users ask or answer.