Explain parameter elimination for complex curves
I'm reading Stewart's Calculus and in "Calculus with Parametric Curves" he shows the formula which comes from the Chain rule:
$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$
But what I don't understand is that for some complex curves for example:
$x = 2\sin\left(1+3t\right), y = 2t^{3}$
If I try to retreive y(x) I will get
$y\ =\ 2\left(\frac{\arcsin\left(\frac{x}{2}\right)-1}{3}\right)^{3}$
Which will represent only small part of the parametric curve(graph).
And only for some small range of t $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$. For example when t = 1, $y(x)$ is not defined.
So the question is: Am I missing something, or $\frac{dy}{dx}$ can't always represent $\frac{\frac{dy}{dt}}{\frac{dx}{dt}}$?
Answer
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
-
That’s not exactly what I’ve asked. As I’ve said if we take a look into graph of parametric equation it has complex shape and many negative derivatives(negative angles of tangent lines). But y(x) is just a small part of the graph of parametric equation, and it doesn’t have those negative derivatives(angles of tangent lines), since it grows from left to right. That’s why I said that dy/dx can’t even have similar values to dy/dt/dx/dt for some of the t values( for example 1).
-
I will tip you additional 5$. Just give me some better explanation please.
-
I see you accepted. Do you still need aditional help? I explained above that dy/dx always equals (dy/dt)/(dx/dt). Not sure what you mean by when t = 1, y(x) is not defined.
-
I'm preparing another question, will be ready in couple minutes.
-
- answered
- 1273 views
- $5.00
Related Questions
- Evaluate $I(a) = \int_{0}^{\infty}\frac{e^{-ax^2}-e^{-x^2}}{x}dx $
- Velocity of a rock
- Evaluate$\int \sqrt{\tan x}dx$
- Is it possible to transform $f(x)=x^2+4x+3$ into $g(x)=x^2+10x+9$ by the given sequence of transformations?
- Fourier series
- Derivatives
- Applications of Integration [Calculus 1 and 2]
- Evluate $\int_{|z|=3}\frac{1}{z^5(z^2+z+1)}\ dz$