Explain parameter elimination for complex curves
I'm reading Stewart's Calculus and in "Calculus with Parametric Curves" he shows the formula which comes from the Chain rule:
$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$
But what I don't understand is that for some complex curves for example:
$x = 2\sin\left(1+3t\right), y = 2t^{3}$
If I try to retreive y(x) I will get
$y\ =\ 2\left(\frac{\arcsin\left(\frac{x}{2}\right)-1}{3}\right)^{3}$
Which will represent only small part of the parametric curve(graph).
And only for some small range of t $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$. For example when t = 1, $y(x)$ is not defined.
So the question is: Am I missing something, or $\frac{dy}{dx}$ can't always represent $\frac{\frac{dy}{dt}}{\frac{dx}{dt}}$?
Answer
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
-
That’s not exactly what I’ve asked. As I’ve said if we take a look into graph of parametric equation it has complex shape and many negative derivatives(negative angles of tangent lines). But y(x) is just a small part of the graph of parametric equation, and it doesn’t have those negative derivatives(angles of tangent lines), since it grows from left to right. That’s why I said that dy/dx can’t even have similar values to dy/dt/dx/dt for some of the t values( for example 1).
-
I will tip you additional 5$. Just give me some better explanation please.
-
I see you accepted. Do you still need aditional help? I explained above that dy/dx always equals (dy/dt)/(dx/dt). Not sure what you mean by when t = 1, y(x) is not defined.
-
I'm preparing another question, will be ready in couple minutes.
-
- answered
- 1357 views
- $5.00
Related Questions
- Calculus - Derivatives (help with finding a geocache)
- (Calculus 1) Basic Calc: Derivatives, optimization, linear approximation...
- Applied calc question 2 and 3
- Is $\sum_{n=1}^{\infty}\frac{\arctan (n!)}{n^2}$ convergent or divergent?
- Calculus: INFINITE SERIES
- Does $\lim_{(x,y)\rightarrow (0,0)}\frac{(x^2-y^2) \cos (x+y)}{x^2+y^2}$ exists?
- Find the antiderrivative of $\int \frac{v^2-v_o^2}{2\frac{K_e\frac{q_1q_2}{r^2}}{m} } dr$
- Determine where the following function is discontinuous