Show that $\int_0^{\frac{\pi}{2}}\frac{ x}{ \tan x}dx=\frac{\pi}{2} \ln 2$
Answer
For $t>0$, define
\[f(t)=\int_0^{\frac{\pi}{2}}\frac{\tan^{-1}(t \tan x)}{\tan x}dx,\]
and not that
\[f(1)=\int_0^{\frac{\pi}{2}}\frac{x}{\tan x}dx.\]
Then
\[f'(t)=\int_0^{\frac{\pi}{2}}\frac{\tan x}{1+(t \tan x)^2}\cdot \frac{1}{\tan x}dx=\int_0^{\frac{\pi}{2}}\frac{1}{1+(t \tan x)^2}dx\]
\[=\int_0^{\frac{\pi}{2}}\frac{\sec^2 x}{1+(t \tan x)^2}\cdot \frac{1}{1+\tan^2 x}dx\]
\[=\int_0^{\infty}\frac{1}{1+t^2 u^2}\cdot\frac{1}{1+u^2}du (u=\tan x) \]
\[=\frac{1}{t^2-1}\int_0^{\infty} \frac{t^2}{1+t^2 u^2}-\frac{1}{1+u^2}du\]
\[=\frac{1}{t^2-1} \big( t^2\cdot \frac{\tan^{-1}(tu)}{t}-\tan^{-1}u\big)|_0^{\infty}\]
\[=\frac{1}{t^2-1} \big( t^2\cdot \frac{\frac{\pi}{2}}{t}-\frac{\pi}{2}\big)-0=\frac{1}{t^2-1} (t-1)\frac{\pi}{2}\]
\[=\frac{\pi}{2}\frac{1}{t+1}.\]
Thus
\[f'(t)=\frac{\pi}{2}\frac{1}{t+1} \Rightarrow f(t)=\frac{\pi}{2}\ln (t+1)+C.\]
It is easy to see that $f(0)=0=C$. Hence
\[f(t)=\frac{\pi}{2}\ln (t+1).\]
Therefore
\[\int_0^{\frac{\pi}{2}}\frac{x}{\tan x}dx=f(1)=\frac{\pi}{2}\ln (2).\]

- answered
- 2757 views
- $15.00
Related Questions
- Prove that if $T \in L(V,W)$ then $ \|T\| = \inf \{M \in \R : \, \|Tv\| \le M\|v\| \textrm{ for all } v \in V \}.$
- Inverse function evaluation
- Find $n$ such that $\lim _{x \rightarrow \infty} \frac{1}{x} \ln (\frac{e^{x}+e^{2x}+\dots e^{nx}}{n})=9$
- Early uni/college Calculus (one question)
- Epsilon-delta definitoon of continuity for $f : x → x^3$
- Second order directional derivative
- Calculus - Differentiation
- Calculate $\iint_R (x+y)^2 e^{x-y}dx dy$ on the given region