Show that $\int_0^{\frac{\pi}{2}}\frac{ x}{ \tan x}dx=\frac{\pi}{2} \ln 2$
Answer
For $t>0$, define
\[f(t)=\int_0^{\frac{\pi}{2}}\frac{\tan^{-1}(t \tan x)}{\tan x}dx,\]
and not that
\[f(1)=\int_0^{\frac{\pi}{2}}\frac{x}{\tan x}dx.\]
Then
\[f'(t)=\int_0^{\frac{\pi}{2}}\frac{\tan x}{1+(t \tan x)^2}\cdot \frac{1}{\tan x}dx=\int_0^{\frac{\pi}{2}}\frac{1}{1+(t \tan x)^2}dx\]
\[=\int_0^{\frac{\pi}{2}}\frac{\sec^2 x}{1+(t \tan x)^2}\cdot \frac{1}{1+\tan^2 x}dx\]
\[=\int_0^{\infty}\frac{1}{1+t^2 u^2}\cdot\frac{1}{1+u^2}du (u=\tan x) \]
\[=\frac{1}{t^2-1}\int_0^{\infty} \frac{t^2}{1+t^2 u^2}-\frac{1}{1+u^2}du\]
\[=\frac{1}{t^2-1} \big( t^2\cdot \frac{\tan^{-1}(tu)}{t}-\tan^{-1}u\big)|_0^{\infty}\]
\[=\frac{1}{t^2-1} \big( t^2\cdot \frac{\frac{\pi}{2}}{t}-\frac{\pi}{2}\big)-0=\frac{1}{t^2-1} (t-1)\frac{\pi}{2}\]
\[=\frac{\pi}{2}\frac{1}{t+1}.\]
Thus
\[f'(t)=\frac{\pi}{2}\frac{1}{t+1} \Rightarrow f(t)=\frac{\pi}{2}\ln (t+1)+C.\]
It is easy to see that $f(0)=0=C$. Hence
\[f(t)=\frac{\pi}{2}\ln (t+1).\]
Therefore
\[\int_0^{\frac{\pi}{2}}\frac{x}{\tan x}dx=f(1)=\frac{\pi}{2}\ln (2).\]
- answered
- 2531 views
- $15.00
Related Questions
- Calculus - 2nd order differential equations and partial derivatives
- Convergence of $\int_{1}^{\infty} e^{\sin(x)}\cdot\frac{\sin(x)}{x^2} $
- Prove that $A - B=A\cap B^c$
- Prove that $tan x +cot x=sec x csc x$
- Applications of Stokes' Theorem
- Prove that $S \subseteq X$ is nowhere dense iff $X-\overline{S}$ is dense.
- Compute $\lim_{x \rightarrow 0} \frac{1-\arctan (\sin(x)+1)}{e^{x}-1}$
- Application of Integrals