continuous function
let f: R->R be a continuous function such that f(0)=f(2)=1. then there exists c>0 such that f(c)=c
prove this.
Answer
Answers can be viewed only if
- The questioner was satisfied and accepted the answer, or
- The answer was disputed, but the judge evaluated it as 100% correct.
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to 50% commission on every question your affiliated users ask or answer.
- answered
- 261 views
- $4.00
Related Questions
- Find the cardinality of the set of all norms on R^n (hint: show that every norm || || : R n → R is continuous).
- Assume there is no $x ∈ R$ such that $f(x) = f'(x) = 0$. Show that $$S =\{x: 0≤x≤1,f(x)=0\}$$ is finite.
- $\textbf{I would like a proof in detail of the following question.}$
- Prove that if $T \in L(V,W)$ then $ \|T\| = \inf \{M \in \R : \, \|Tv\| \le M\|v\| \textrm{ for all } v \in V \}.$
- Determine where the following function is discontinuous
- Beginner Question on Integral Calculus
- Prove that a closed subset of a compact set is compact.
- Calculating P values from data.