Generating set for finitely generated submodule of finitely generated module
Let $R$ be a ring, $M$ a finitely generated $R$-module, and $N \subseteq M$ a f.g. submodule. Suppose $M$ has a minimal generating set of $m$ elements, then under what conditions may we assume that $N$ has a (not necessarily minimal) generating set of $n \leq m$ generators? I know the result holds, for example, when $R$ is a PID, but are there any other sufficient (or even necessary) conditions on $R$ (and/or $M,N$) to provide a complete characterization? A reference would be welcome.
Elviegem
41
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
Erdos
4.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 210 views
- $20.00
Related Questions
- [Modules] Show that Q/Z is injective and not projective
- Rotational symmertries of octahedron, $R(O_3)$
- How to properly write rational exponents when expressed as roots?
- Let $f(x,y,z)=(x^2\cos (yz), \sin (x^2y)-x, e^{y \sin z})$. Compute the derivative matrix $Df$.
- Homomorphism
- Multiplying Polynomials
- True or false
- MAT-144 Assignment