Generating set for finitely generated submodule of finitely generated module
Let $R$ be a ring, $M$ a finitely generated $R$-module, and $N \subseteq M$ a f.g. submodule. Suppose $M$ has a minimal generating set of $m$ elements, then under what conditions may we assume that $N$ has a (not necessarily minimal) generating set of $n \leq m$ generators? I know the result holds, for example, when $R$ is a PID, but are there any other sufficient (or even necessary) conditions on $R$ (and/or $M,N$) to provide a complete characterization? A reference would be welcome.
41
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment

4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 359 views
- $20.00
Related Questions
- Find $a,b,c$ so that $\begin{bmatrix} 0 & 1& 0 \\ 0 & 0 & 1\\ a & b & c \end{bmatrix} $ has the characteristic polynomial $-\lambda^3+4\lambda^2+5\lambda+6=0$
- Prove that $A - B=A\cap B^c$
- Algebra Question 3
- Differentiate $f(x)=\int_{\sqrt{x}}^{\arcsin x} \ln\theta d \theta$
- How do you go about solving this question?
- Reverse this equation/function (2d to isometric)
- Algebra Question
- Need Upper Bound of an Integral