Causality Help!?!?
I have a regression model with 1 Y variable and 2 X variables (R sq = .66). The Y variable, and one of the X variables are likely interdependent (based on deep domain knowledge of 20+ years).
When I swap the Y variable and the X variable (making the Y independent and X dependent )…. the resulting new regression model shows the new X variable (formerly Y) with a value of .49. This is pretty strong, but significantly weaker than the former X variable (now Y variable) which previously had a p value of .10.
What conclusions can I make? Can I say that the original X variable has ~twice as much effect on the trend (.90 / .51) as the new (swapped) X variable? Even better, can I say that ~2/3rds [.90/(.90+.51)] of trend is a function of the original X variable (this is actually what I believe based on domain knowledge)?
(Note - I know only enough to be dangerous about regression)
Answer
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
- answered
- 733 views
- $10.00
Related Questions
- Bayesian statistics
- How to use bootstrap techniques to criticise a linear model?
- Statistics problem
- How safe is this driver?
- Two statistics proofs with regressions, any help much appreciated!
- How do we describe an intuitive arithmetic mean that gives the following? (I can't type more than 200 letters)
- Bernoulli problem
- please use statistics to explain spooky phenomenon