Prove that $\lim_{n\rightarrow \infty} \int_{[0,1]^n}\frac{|x|}{\sqrt{n}}=\frac{1}{\sqrt{3}}$
Prove that $$\lim_{n\rightarrow \infty} \int_{[0,1]^n}\frac{|x|}{\sqrt{n}}=\frac{1}{\sqrt{3}},$$
where $[0,1]^n=[0,1]\times \dots \times [0,1]$ is the unit cube in $\mathbb{R}^n$.
28
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1420 views
- $20.00
Related Questions
- Find a number for 𝛼 so f(x) is a valid probability density function
- Hs level math (problem solving) *der
- Poisson process question
- Parametric, Polar, and Vector-Valued Equations for Kav10
- Why is the t-test for two independent samples $\ t^* = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$?
- How to recalculate 2D polygon side lengths when tilt is applied in 3D space?
- Beginner Differential Equations - Growth Rate Question
- ANCOVA: R Squared and Partial Eta Squared