Prove that $\lim_{n\rightarrow \infty} \int_{[0,1]^n}\frac{|x|}{\sqrt{n}}=\frac{1}{\sqrt{3}}$
Prove that $$\lim_{n\rightarrow \infty} \int_{[0,1]^n}\frac{|x|}{\sqrt{n}}=\frac{1}{\sqrt{3}},$$
where $[0,1]^n=[0,1]\times \dots \times [0,1]$ is the unit cube in $\mathbb{R}^n$.

28
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.

4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1234 views
- $20.00
Related Questions
- Relative percentage increase / decrease
- Calculus Help
- Finding the probability that a roughly normal distributed will have the highest value among multiple curves
- Velocity of a rock
- foundations in probability
- Use Rouche’s Theorem to show that all roots of $z ^6 + (1 + i)z + 1 = 0$ lines inside the annulus $ \frac{1}{2} \leq |z| \leq \frac{5}{4}$
- Limits calculus problem
- What statistical test should I use to compare 2 multiple linear regression models