Bayesian Statistics - Zero Inflated Binomial Model - Calculate Posterior Conditional Distribution
Looking at solving question a) as attached. Even if is not fully solved, some help on where to begin would also be appreciated.
Thanks
Answer
You want to calculate:
$$P(z_i=1\mid x_i,\omega,p)$$
the definition of the $z_i$ is so that $z_i=0\implies x_i=0$. So if $x_i\neq0$ you must have that $z_i=1$, i.e.:
$$P(z_i=1\mid x_i\neq0, \omega,p)=1$$
and, as the text remarks, the onlything to calculate is
$$P(z_i=1\mid x_i=0, \omega,p)$$
First we apply Bayes Theorem to get:
$$P(z_i=1\mid x_i=0,\omega,p) = \frac{P(x_i=0\mid z_i=1, p,\omega)\cdot P(z_i=1\mid p,\omega)}{P(x_i=0\mid p,\omega)}$$
We know that $(x_i|z_i=1)\sim BIN(7;p)$, so $P(x_i=0\mid z_i=1,p,\omega) = (1-p)^7$. We further calculate:
$$P(x_i=0\mid p,\omega) = P(x_i=0\mid z_i=1,p,\omega)\cdot P(z_i=1\mid p,\omega)+P(x_i=0\mid z_i=0,p,\omega)\cdot P(z_i=0\mid p,\omega)$$
which we evaluate to:
$$P(x_i=0\mid p,\omega) = (1-p)^7\cdot \omega+1\cdot(1-\omega)$$
This leaves us with:
$$P(z_i=1\mid x_i=0,p,\omega)=\frac{(1-p)^7\cdot \omega}{(1-p)^7\cdot \omega + (1-\omega)}$$
And in total:
$$P(z_i=1\mid x_i=0,\omega) = \int_0^1 P(z_i=1\mid x_i=0, p,\omega) \underline{p}(p)\,dp$$
where $\underline p(p) = \dfrac{p^{a-1}\cdot (1-p)^{b-1}}{B(a,b)}$ is the Beta distribution. This doesn't look like it would be any fun to evaluate - the text probably would accept this expression as an answer.
- answered
- 1862 views
- $14.76
Related Questions
- Explain how to get the vertical values when $n = 10$, $p = .5$, $\mu = 5$ and $\sigma^2 = 2.5$
- Estimating the Suit with 12 Cards: MLE and Confidence Intervals in a Figgie Starting Hand
- Find the maximum likelihood estimate
- Question about sample size calculation for a single arm long term follow-up study
- In each of the situations, state whether the indicated model can be regarded as a Generalized Linear Model (GLM) and give reasons for your answer.
- Correlation of Normal Random Variables
- Multivariate Student-t Posterior Predictive - Detailed Derivation
- A gamma function problem