Probability and Statistics question please help
Let $X_1,X_2,...,X_n$ be a random sample with $E(X_k) = 1.5$ and $Var(X_k) = 9$. Another random sample $Y_1,Y_2,...,Y_n$ is selected, independent of the previous sample. The new sample has $E(Y_k) = 2$ and $Var(Y_k) = 4$. Both samples have sample size $n = 100$.
c) Find the value $\delta> 0$ such that: $P(| \hat{Y} − \hat{X}|< \delta) =0.95.$
d) Find the minimum value $n$ such that $P(| \hat{Y} − \hat{X}|< 0.1) ≤0.95.$
Alex Sean
179
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
Mathe
3.5K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 703 views
- $15.00
Related Questions
- Sample size calculation for a cross sectional healthcare study
- Bayesian Statistics - Zero Inflated Binomial Model - Calculate Posterior Conditional Distribution
- [Combinatorics] Selections, Distributions, and Arrangements with Multiple Restrictions
- Figuring out the maths for the probability of two adopted teens randomly being matched as pen pals in 2003
- Bad Beat Jackpot
- stats - data analysis
- Prove that the following sequences monotnically decrease and increase correspondingly. Since they are bounded, find the limit.
- Operations research