Probability and Statistics question please help
Let $X_1,X_2,...,X_n$ be a random sample with $E(X_k) = 1.5$ and $Var(X_k) = 9$. Another random sample $Y_1,Y_2,...,Y_n$ is selected, independent of the previous sample. The new sample has $E(Y_k) = 2$ and $Var(Y_k) = 4$. Both samples have sample size $n = 100$.
c) Find the value $\delta> 0$ such that: $P(| \hat{Y} − \hat{X}|< \delta) =0.95.$
d) Find the minimum value $n$ such that $P(| \hat{Y} − \hat{X}|< 0.1) ≤0.95.$
179
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
3.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1352 views
- $15.00
Related Questions
- Find a number for 𝛼 so f(x) is a valid probability density function
- Stats project
- Probabilities
- Operations research
- Probability that a pump will fail during its design life
- A-Level Probability Counting Problem
- Prove that $\lim_{n\rightarrow \infty} \int_{[0,1]^n}\frac{|x|}{\sqrt{n}}=\frac{1}{\sqrt{3}}$
- Equation Required/Formula