Evaluate $\sin(\frac{19\pi}{12})$
1 Answer
\[\sin^2 (\frac{19\pi}{12})=\frac{1-\cos 2(\frac{19\pi}{2})}{2}=\frac{1-\cos \frac{38 \pi}{2}}{2}=\frac{1-\cos (\frac{2\pi}{12})}{2}\]
\[=\frac{1-\cos (\frac{\pi}{6})}{2}=\frac{1-\frac{\sqrt{3}}{2}}{2}=\frac{2-\sqrt{3}}{4}.\]
Since $0< \frac{19\pi}{12} < \pi $, $\sin (\frac{19\pi}{12})>0$. Hence
\[\sin (\frac{19\pi}{12})=\sqrt{\frac{2-\sqrt{3}}{4}}.\]
4.8K
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- 1 Answer
- 426 views
- Pro Bono
Related Questions
- How do you go about solving this question?
- Calculate the angle of an isosceles triangle to cover a distance on a plane
- How do you find a side of a scalene triangle with internal angles and area?
- Similar shapes
- Prove that $\frac{1}{1-\sin x}-\frac{1}{1+\sin x}=2 \tan x \sec x$
- Find the domain of the function $f(x)=\frac{\ln (1-\sqrt{x})}{x^2-1}$
- Integral of $\arctan x$
- Analyzing Concave Down Segments of the Sinusoidal Curve