Lyapuniv-functions
We have the system of ODEs
$y_1'= y_2$
$y_2'=-y_2-\sin(y_1)$.
Decide for each of the following functions whether it is a Lyapunov-function of $(0,0)$ or not:
$V(y_1,y_2)= y_1^2+y_2^2$.
$V(y_1,y_2)= \frac{y_2^2}{2}+(1- \cos(y_1))$.
$V(y_1,y_2)= \frac{(y_1+y_2)^2}{2} + y_1^2 + \frac{y_2^2}{2}$.
116
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
3.6K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 773 views
- $13.00
Related Questions
- System of linear differential equations
- Burgers’ equation $u_t + u u_x = −x $
- Two masses attached to three springs - Differential equations
- Differential Equations- Initial Value Problem
- Find a formula for the vector hyperbolic problem
- Differential Equations
- What is the transfer function of this system of differential equations?
- Explicit formula for the trasport equation