A linear ODE
Find the $\textbf{general}$ solution of
$y'= \left (\begin{matrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{matrix} \right ) \cdot y$
and a solution with the initial value $y(0) = \left ( \begin{matrix} 1 \\ -1 \\ 1 \end{matrix} \right )$.
116
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1536 views
- $10.00
Related Questions
- Equations of Motion and Partial Fractions
- Differential Equations (2nd-order, general solution, staionary solution, saddle point, stable branch)
- Differential Equations
- Show that the following subset Ω of Euclidean space is open
- Ordinary Differential Equations Word Problems
- Ordinary differential equation questions
- Suppose $u \in C^2(\R^n)$ is a harmonic function. Prove that $v=|\nabla u|^2$ is subharmonic, i.e. $-\Delta v \leq 0$
- 3 Multi-step response questions