How does the traffic flow model arrive at the scaled equation?
Consider the model for traffic flow with density $ρ(x, t)$ that satisfies
$ρ_t + (ρV_*(1 − ρ/ρ_*))_x = 0$
where $V_*$ was a given maximum speed and $ρ_*$ a given maximum density. Show that by scaling $ρ$ and a combination of $x$ (space) and $t$ (time) we can arrive at the scaled equation
$u_t + (u − u^2)_x = 0$
153
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1305 views
- $13.00
Related Questions
- How to derive the term acting like a first derivative with respect to A that I found by accident?
- Week solution of the equation $u_t + u^2u_x = f(x,t)$
- Solve the Riemann Problem
- 10 questions Differential Equations
- Applied Partial Differential Equations with fourier series and boundary value problems 5th edition 1.4.7 part B
- Can someone translate $s_j : \Omega \hspace{3pt} x \hspace{3pt} [0,T_{Final}] \rightarrow S_j \subset R$ into simple English for me?
- Differentiate $y=((e^x)-(e^{-x}))/((e^x)+(e^{-x}))$ and prove that $dy/dx=1-y^2$
- Partial differential equations help