Uniqueness of solutions of the elliptic equation $\Delta u = u^5 + 2 u^3 + 3 u$
Let $\Omega$ be a bounded domain in $\mathbb R^n$ with smooth boundary. Assume that $u \in C^2(\bar \Omega) \cap H_0^1 (\Omega)$ be a strong solution to
\[ \Delta u = u^5 + 2 u^3 + 3 u \qquad \text{in} \Omega, \]
with $u=0$ on $\partial \Omega$. Show that $u \equiv 0$ is the only solution.
163
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1544 views
- $15.00
Related Questions
- Week solution of the equation $u_t + u^2u_x = f(x,t)$
- Explicit formula for the trasport equation
- Equipartition of energy in one dimensional wave equation $u_{tt}-u_{xx}=0 $
- General Solution of a PDE and Fourier Series Representations of Functionsns
- Suppose $u \in C^2(\R^n)$ is a harmonic function. Prove that $v=|\nabla u|^2$ is subharmonic, i.e. $-\Delta v \leq 0$
- Solve $Lx = b$ for $x$ when $b = (1, 1, 2)^T$.
- Prove that $\lim_{\epsilon \rightarrow 0} \int_{\partial B(x,\epsilon)} \frac{\partial \Phi}{\partial \nu}(y)f(x-y)dy=f(x)$
- Optimisation Problem