Uniqueness of solutions of the elliptic equation $\Delta u = u^5 + 2 u^3 + 3 u$
Let $\Omega$ be a bounded domain in $\mathbb R^n$ with smooth boundary. Assume that $u \in C^2(\bar \Omega) \cap H_0^1 (\Omega)$ be a strong solution to
\[ \Delta u = u^5 + 2 u^3 + 3 u \qquad \text{in} \Omega, \]
with $u=0$ on $\partial \Omega$. Show that $u \equiv 0$ is the only solution.

163
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.

4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 907 views
- $15.00
Related Questions
- Partial Differential Equations
- Solve the two-way wave equation in terms of $u_0$
- Dynamic Systems of Differential Equations
- Prove that $\lim_{\epsilon \rightarrow 0} \int_{\partial B(x,\epsilon)} \frac{\partial \Phi}{\partial \nu}(y)f(x-y)dy=f(x)$
- Optimisation Problem
- [ Banach Fixt Point Theorem ] $\frac{dy} {dx} = xy, \text{with} \ \ y(0) = 3,$
- Show that $\int_\Omega \Delta f g = \int_\Omega f \Delta g$ for appropriate boundary conditions on $f$ or $g$
- Partial differential equations help