Uniqueness of solutions of the elliptic equation $\Delta u = u^5 + 2 u^3 + 3 u$
Let $\Omega$ be a bounded domain in $\mathbb R^n$ with smooth boundary. Assume that $u \in C^2(\bar \Omega) \cap H_0^1 (\Omega)$ be a strong solution to
\[ \Delta u = u^5 + 2 u^3 + 3 u \qquad \text{in} \Omega, \]
with $u=0$ on $\partial \Omega$. Show that $u \equiv 0$ is the only solution.

163
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.

4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1406 views
- $15.00
Related Questions
- Mean value formula for the laplace equation on a disk
- Laplace transforms and transfer functions
- Help with 2 PDE questions
- Solve $Lx = b$ for $x$ when $b = (1, 1, 2)^T$.
- Prove that $\lim_{\epsilon \rightarrow 0} \int_{\partial B(x,\epsilon)} \frac{\partial \Phi}{\partial \nu}(y)f(x-y)dy=f(x)$
- Solve the two-way wave equation
- Can someone translate $s_j : \Omega \hspace{3pt} x \hspace{3pt} [0,T_{Final}] \rightarrow S_j \subset R$ into simple English for me?
- Fixed points of analytic complex functions on unit disk $\mathbb{D}$