Limit of an Integral of a $C^\infty$-Smooth Function with Compact Support
Let $\varphi:\R\rightarrow\R$ be a $C^\infty$-smooth function with compact support. Prove that the following limit exists, and compute the limit.
$$\lim_{\varepsilon\rightarrow0+} \int_{-\infty}^{\infty}\frac{\varphi(x)}{x+i\varepsilon} \;\mathrm{d}x , i=\sqrt{-1}$$

Answer
- The questioner was satisfied and accepted the answer, or
- The answer was disputed, but the judge evaluated it as 100% correct.
1 Attachment
-
Solving and writing up the solution to this question took a few hours. Please consider setting the price at a more appropriate level depending on the question's difficulty.
-
Hello. Sorry about that. First time using the service, so I didn't know what a good price would be. I also didn't know it would be so difficult to solve - I thought it would mostly use basic definitions since the other questions on this exam use mostly definitions or key but simply-stated theorems like the extreme value theorem. I would be willing to up the price but I don't think there is a way to do it after the fact?
- answered
- 384 views
- $10.00
Related Questions
- Uniform convergence of functions
- A function satifying $|f(x)-f(y)|\leq |x-y|^2$ must be constanct.
- Let $(X, ||\cdot||)$ be a normed space. Let $\{x_n\}$ and $\{y_n\}$ be two Cauchy sequences in X. Show that the seqience Show that the sequence $λ_n = ||x_n − y_n|| $ converges.
- Prove that $S \subseteq X$ is nowhere dense iff $X-\overline{S}$ is dense.
- What is the asymptotic density of $A$ and $B$ which partition the reals into subsets of positive measure?
- Prove that if $T \in L(V,W)$ then $ \|T\| = \inf \{M \in \R : \, \|Tv\| \le M\|v\| \textrm{ for all } v \in V \}.$
- real analysis
- [Real Analysis] Show that the set $A$ is uncountable. Use this result to show that ${\displaystyle\mathbb {R}}$ is uncountable.