Limit of an Integral of a $C^\infty$-Smooth Function with Compact Support
Let $\varphi:\R\rightarrow\R$ be a $C^\infty$-smooth function with compact support. Prove that the following limit exists, and compute the limit.
$$\lim_{\varepsilon\rightarrow0+} \int_{-\infty}^{\infty}\frac{\varphi(x)}{x+i\varepsilon} \;\mathrm{d}x , i=\sqrt{-1}$$

Answer
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
-
Solving and writing up the solution to this question took a few hours. Please consider setting the price at a more appropriate level depending on the question's difficulty.
-
Hello. Sorry about that. First time using the service, so I didn't know what a good price would be. I also didn't know it would be so difficult to solve - I thought it would mostly use basic definitions since the other questions on this exam use mostly definitions or key but simply-stated theorems like the extreme value theorem. I would be willing to up the price but I don't think there is a way to do it after the fact?
- answered
- 1133 views
- $10.00
Related Questions
- Advanced Modeling Scenario
- Existence of a Divergent Subsequence to Infinity in Unbounded Sequences
- What is the asymptotic density of $A$ and $B$ which partition the reals into subsets of positive measure?
- Accumulation points question (Real Analysis)
- [Real Analysis] Show that the set $A$ is uncountable. Use this result to show that ${\displaystyle\mathbb {R}}$ is uncountable.
- real analysis
- real analysis
- Prove Holder-continuity for $\mu_\lambda (x) = \sum\limits_{n=1}^\infty \frac{ \cos(2^n x)}{2^{n \lambda} }$