Matchmaticians
Home How it works Log in Sign up
Matchmaticians
  • Home
  • Search
  • How it works
  • Ask Question
  • Tags
  • Support
  • Affiliate Program
  • Log in
  • Sign up

Im(F)⊂Im(G)
Equivalent to
∃γ: ,|| F∗z∗∥ <γ || G∗z∗∥
 ∀z∗∈Z∗

I want proof this lemma
Let V, W and Z be three Banach reflexive spaces. And F∈L(V,Z), G∈L(W,Z). Then the following are equivalent.

 
Im(F)⊂Im(G)
.
∃γ : || F∗z∗∥ < γ ||G∗z∗∥
 ∀z∗∈Z∗
.
Functional Analysis
Mussab1 Hebeek1 Mussab1 Hebeek1
1
Report
  • Share on:
  • Paul F Paul F
    0

    Questions at this level should come with a bounty.

Answer this question
Join Matchmaticians Affiliate Marketing Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
  • unanswered
  • 289 views
  • Pro Bono

Related Questions

  • A function  satifying $|f(x)-f(y)|\leq |x-y|^2$ must be constanct.
  • Two exercises in complex analysis 
  • Prove that $f$ is a diffeomorphism $C^∞$, that maps... (More inside)
  • Reflexive Banach Space and Duality 
  • H is a Hilber space
  • How to derive the term acting like a first derivative with respect to A that I found by accident?
  • Prove that if $T \in L(V,W)$ then $ \|T\| = \inf \{M \in \R : \, \|Tv\| \le M\|v\| \textrm{ for all } v \in V \}.$
  • Fixed points of analytic complex functions on unit disk $\mathbb{D}$
Home
Support
Ask
Log in
  • About
  • About Us
  • How it works
  • Review Process
  • matchmaticians
  • Privacy Policy
  • Terms of Use
  • Affiliate Program
  • Questions
  • Newest
  • Featured
  • Unanswered
  • Contact
  • Help & Support Request
  • Give Us Feedback

Get the Matchmaticians app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store Get Matchmaticians on Google Play
Copyright © 2019 - 2025 Matchmaticians LLC - All Rights Reserved

Search

Search Enter a search term to find results in questions