Equipartition of energy in the wave equation 

(Equipartition of energy). Let $u \in C^2(\R \times [0,\infty))$ solve the initial-value problem for the wave equation in one dimension: $$ \begin{cases} u_{tt}-u_{xx}=0 & \text{ in } \R \times (0, \infty) \\ u=g, u_t=h & \text{ on } \R \times \{t=0\}. \end{cases} $$ Suppose $g, h$ have compact support. The kinetic energy is $k(t) := \frac{1}{2} \int_{-\infty}^{\infty} u_t^2 (x,t) \, dx$ and the potential energy is $p(t) := \frac{1}{2} \int_{-\infty}^{\infty} u_x^2 (x,t) \, dx$. Prove that

(i) $k(t)+p(t)$ is constant in $t$,
(ii) $k(t)=p(t)$ for all  $t$ large enugh. 

Answer

Answers can be viewed only if
  1. The questioner was satisfied and accepted the answer, or
  2. The answer was disputed, but the judge evaluated it as 100% correct.
View the answer
The answer is accepted.