Equipartition of energy in the wave equation
(Equipartition of energy). Let $u \in C^2(\R \times [0,\infty))$ solve the initial-value problem for the wave equation in one dimension: $$ \begin{cases} u_{tt}-u_{xx}=0 & \text{ in } \R \times (0, \infty) \\ u=g, u_t=h & \text{ on } \R \times \{t=0\}. \end{cases} $$ Suppose $g, h$ have compact support. The kinetic energy is $k(t) := \frac{1}{2} \int_{-\infty}^{\infty} u_t^2 (x,t) \, dx$ and the potential energy is $p(t) := \frac{1}{2} \int_{-\infty}^{\infty} u_x^2 (x,t) \, dx$. Prove that
(i) $k(t)+p(t)$ is constant in $t$,
(ii) $k(t)=p(t)$ for all $t$ large enugh.
93
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
163
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1653 views
- $12.00
Related Questions
- Prove that $\lim_{\epsilon \rightarrow 0} \int_{\partial B(x,\epsilon)} \frac{\partial \Phi}{\partial \nu}(y)f(x-y)dy=f(x)$
- Week solution of the equation $u_t + u^2u_x = f(x,t)$
- Laplace transforms and initial value problems.
- Fixed points of analytic complex functions on unit disk $\mathbb{D}$
- Leaky Buckets: Volume in a system of 2+ buckets that can be empty
- Linearization of nonlinear differential equations near an equilibrium position
- Suppose $u \in C^2(\R^n)$ is a harmonic function. Prove that $v=|\nabla u|^2$ is subharmonic, i.e. $-\Delta v \leq 0$
- [ Banach Fixt Point Theorem ] $\frac{dy} {dx} = xy, \text{with} \ \ y(0) = 3,$