Solve $Lx = b$ for $x$ when $b = (1, 1, 2)^T$.
Let $L$ be a $3×3$ symmetric matrix with eigenvalues $λ_1 = −1$, $λ_2 = −2$, and $λ_3 = −3$ and their corresponding egenvectors $v_1 = (1, 1, 1)^T$, $v_2 = (2, −1, −1)^T$, and $v_3 = (0, 1, −1)^T$ where $T$ denotes the transpose.
Solve $Lx = b$ for $x$ when $b = (1, 1, 2)^T$.
Note: this is the idea behind Sturm-Liouville series solutions of ODE boundary value problems.
Chdogordon
153
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
Martin
1.6K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 777 views
- $20.00
Related Questions
- Diffrential Equations
- Dependency of a solution for differential equation
- Partial Differential Equations
- Differentiate $y=((e^x)-(e^{-x}))/((e^x)+(e^{-x}))$ and prove that $dy/dx=1-y^2$
- Why does this spatial discretization with n intervals have a position of (n-1)/n for each interval?
- Fixed points of analytic complex functions on unit disk $\mathbb{D}$
- Aysomptotical stability
- Differential equations 2 questions with multiple parts