General Solution of a PDE and Fourier Series Representations of Functionsns
Find the general solution $u = u(x,y)$ of the equation: $$ 2u_{xx} + 6u_{xy} + 4u_{yy} + u_x + u_y = 0. $$
Show that for $-\pi < x < \pi$, the following series representations hold: $$ x = 2 \left( \sin x - \frac{\sin 2x}{2^2} + \frac{\sin 3x}{3^2} - \dots \right). $$ $$ x^2 = \frac{\pi^2}{3} - 4 \left( \cos x - \frac{\cos 2x}{2^2} + \frac{\cos 3x}{3^2} - \dots \right). $$ $$ x(\pi + x)(\pi - x) = 12 \left( \sin x - \frac{\sin 2x}{2^2} + \frac{\sin 3x}{3^2} - \dots \right). $$
18
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.

4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 118 views
- $20.00
Related Questions
- [ Banach Fixt Point Theorem ] $\frac{dy} {dx} = xy, \text{with} \ \ y(0) = 3,$
- Find solutions to the Riemann Problems
- Can someone translate $s_j : \Omega \hspace{3pt} x \hspace{3pt} [0,T_{Final}] \rightarrow S_j \subset R$ into simple English for me?
- Partial differential equations help
- Burgers’ equation $u_t + u u_x = −x $
- Equipartition of energy in one dimensional wave equation $u_{tt}-u_{xx}=0 $
- Prove that $\lim_{\epsilon \rightarrow 0} \int_{\partial B(x,\epsilon)} \frac{\partial \Phi}{\partial \nu}(y)f(x-y)dy=f(x)$
- Equipartition of energy in the wave equation