Are these two inequalities are equivalent?
Let's assume that $I_j \in \mathcal{J}$, where $\mathcal{J}$ is a set of images that are correctly classified and $p(I)$ is the output probability distribution of the used underlying model. Out of $\mathcal{J}$, we select $\hat{I}_{\!j^*}$ according to a well defined metric according to the inequality shown in (2). Given that $p(\hat{I}_{\!j^*} | \hat{y}= y) \leq p(\hat{I}_{\!j} | \hat{y}= y), $ where $y$ is the Ground Truth label. However, for $p(\hat{I}_{\!j^*} | \hat{y}= y) > p(\hat{I}_{\!j^*} | \hat{y}\neq y)$ and $p(I_j| \hat{y}= y) < p(I_j | \hat{y}\neq y)$.
How could we show that the first inequality shown in (1) is equivalent to the second inequality shown in (2)?
$$ \sum p(\hat{I}_{\!j^*})\log p(\hat{I}_{\!j^*}) \leq \sum p(\hat{I}_{\!j}) \log p(\hat{I}_{\!j}) \tag{1} $$
$$ \sum \log p(\hat{I}_{\!j^*}) \leq \sum \log p(\hat{I}_{\!j}) \tag{2} $$
A possible arugment that I believe might solve the problem is the following:
We can observe that the difference between both inequalities lies in the fact that (1) can be viewed as a scaled version of (2), where the probabilities are multiplied by their logarithms. Considering the monotonically increasing nature of the logarithmic function, we can roughly establish the equivalence of these two inequalities.
I have tested it numerically, and both inequalities are equivalent, but I cannot prove it mathematically.
- unanswered
- 249 views
- Pro Bono
Related Questions
- Define$ F : C[0, 1] → C[0, 1] by F(f) = f^2$. For each $p, q ∈ \{1, 2, ∞\}$, determine whether $F : (C[0, 1], d_p) → (C[0, 1], d_q)$ is continuous
- Promotional Concept (Probability)
- What would be the probability of "breaking the bank" in this 1985 Blackjack game? (Details in body)
- Central Limit Theorem question
- What are the odds of drawing the two tarot cards that I wanted, then reshuffling the pack, and drawing them both again straight away, in the same order?
- Stochastic Analysis question
- Expected value of random variables - On average, how many points do you expect to receive in each round of this game?
- Find a number for 𝛼 so f(x) is a valid probability density function
Questions at this level should come with a bounty.