Are these two inequalities are equivalent?
Let's assume that $I_j \in \mathcal{J}$, where $\mathcal{J}$ is a set of images that are correctly classified and $p(I)$ is the output probability distribution of the used underlying model. Out of $\mathcal{J}$, we select $\hat{I}_{\!j^*}$ according to a well defined metric according to the inequality shown in (2). Given that $p(\hat{I}_{\!j^*} | \hat{y}= y) \leq p(\hat{I}_{\!j} | \hat{y}= y), $ where $y$ is the Ground Truth label. However, for $p(\hat{I}_{\!j^*} | \hat{y}= y) > p(\hat{I}_{\!j^*} | \hat{y}\neq y)$ and $p(I_j| \hat{y}= y) < p(I_j | \hat{y}\neq y)$.
How could we show that the first inequality shown in (1) is equivalent to the second inequality shown in (2)?
$$ \sum p(\hat{I}_{\!j^*})\log p(\hat{I}_{\!j^*}) \leq \sum p(\hat{I}_{\!j}) \log p(\hat{I}_{\!j}) \tag{1} $$
$$ \sum \log p(\hat{I}_{\!j^*}) \leq \sum \log p(\hat{I}_{\!j}) \tag{2} $$
A possible arugment that I believe might solve the problem is the following:
We can observe that the difference between both inequalities lies in the fact that (1) can be viewed as a scaled version of (2), where the probabilities are multiplied by their logarithms. Considering the monotonically increasing nature of the logarithmic function, we can roughly establish the equivalence of these two inequalities.
I have tested it numerically, and both inequalities are equivalent, but I cannot prove it mathematically.
- unanswered
- 305 views
- Pro Bono
Related Questions
- Probability and Statistics Question help please
- Probability - what is the probability that a given tire length will lie in a lenght of interest
- Probability Question (Expectation Value Limit)
- Need Upper Bound of an Integral
- Insurance question involving net premium
- For each A ∈ { Z, Q, } find the cardinality of the set of all increasing bijective functions f : A → A.
- Compound Interest with monthly added capital
- Coincidence or pattern?
Questions at this level should come with a bounty.