Are these two inequalities are equivalent?
Let's assume that $I_j \in \mathcal{J}$, where $\mathcal{J}$ is a set of images that are correctly classified and $p(I)$ is the output probability distribution of the used underlying model. Out of $\mathcal{J}$, we select $\hat{I}_{\!j^*}$ according to a well defined metric according to the inequality shown in (2). Given that $p(\hat{I}_{\!j^*} | \hat{y}= y) \leq p(\hat{I}_{\!j} | \hat{y}= y), $ where $y$ is the Ground Truth label. However, for $p(\hat{I}_{\!j^*} | \hat{y}= y) > p(\hat{I}_{\!j^*} | \hat{y}\neq y)$ and $p(I_j| \hat{y}= y) < p(I_j | \hat{y}\neq y)$.
How could we show that the first inequality shown in (1) is equivalent to the second inequality shown in (2)?
$$ \sum p(\hat{I}_{\!j^*})\log p(\hat{I}_{\!j^*}) \leq \sum p(\hat{I}_{\!j}) \log p(\hat{I}_{\!j}) \tag{1} $$
$$ \sum \log p(\hat{I}_{\!j^*}) \leq \sum \log p(\hat{I}_{\!j}) \tag{2} $$
A possible arugment that I believe might solve the problem is the following:
We can observe that the difference between both inequalities lies in the fact that (1) can be viewed as a scaled version of (2), where the probabilities are multiplied by their logarithms. Considering the monotonically increasing nature of the logarithmic function, we can roughly establish the equivalence of these two inequalities.
I have tested it numerically, and both inequalities are equivalent, but I cannot prove it mathematically.
- unanswered
- 394 views
- Pro Bono
Related Questions
- How to derive the term acting like a first derivative with respect to A that I found by accident?
- A lower bound
- Correlation of Normal Random Variables
- Summation of Catalan Convolution
- Multivariate Student-t Posterior Predictive - Detailed Derivation
- Assume there is no $x ∈ R$ such that $f(x) = f'(x) = 0$. Show that $$S =\{x: 0≤x≤1,f(x)=0\}$$ is finite.
- Help with statistics
- A problem on almost singular measures in real analysis
Questions at this level should come with a bounty.