For what values k is the system consistent?
Let $T : \mathbb{R} ^{2} \rightarrow \mathbb{R} ^{3}$ be a linear representation with a standard matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & -4 & -k \end{bmatrix} $
where k is a number that we can vary. (Note that it is not an extended matrix).
a) For what values k is the system $Ax = \begin{bmatrix}-17\\34\end{bmatrix} $ consistent?
b) For what values k is the system $Ax = \begin{bmatrix}1\\34\end{bmatrix} $ consistent?
c) For what values k is the linear representation T onto?
d) For what values k is the linear representation T one-to-one?
1Ale1311
64
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
Alessandro Iraci
1.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 540 views
- $15.00
Related Questions
- Find $a,b,c$ so that $\begin{bmatrix} 0 & 1& 0 \\ 0 & 0 & 1\\ a & b & c \end{bmatrix} $ has the characteristic polynomial $-\lambda^3+4\lambda^2+5\lambda+6=0$
- two short Linear Algebra questions
- Show that eigenvectors of a symmetric matrix are orthogonal
- Step by step method to solve the following problem: find coordinates of B.
- Sum of column spaces
- Find $x$ so that $\begin{bmatrix} 2 & 0 & 10 \\ 0 & x+7 & -3 \\ 0 & 4 & x \end{bmatrix} $ is invertible
- Let $H$ be the subset of all 3x3 matrices that satisfy $A^T$ = $-A$. Carefully prove that $H$ is a subspace of $M_{3x3} $ . Then find a basis for $H$.
- [Linear Algebra] Proof check. Nilpotent$\Rightarrow Spec\Rightarrow$ Characteristic Polynomial $\Rightarrow$ Nilpotent