For what values k is the system consistent?
Let $T : \mathbb{R} ^{2} \rightarrow \mathbb{R} ^{3}$ be a linear representation with a standard matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & -4 & -k \end{bmatrix} $
where k is a number that we can vary. (Note that it is not an extended matrix).
a) For what values k is the system $Ax = \begin{bmatrix}-17\\34\end{bmatrix} $ consistent?
b) For what values k is the system $Ax = \begin{bmatrix}1\\34\end{bmatrix} $ consistent?
c) For what values k is the linear representation T onto?
d) For what values k is the linear representation T one-to-one?

64
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.

1.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 693 views
- $15.00
Related Questions
- Diagonalization of linear transformations
- General solutions of the system $X'=\begin{pmatrix} a & b \\ c & d \end{pmatrix} $
- Diagonal and Similar Matrices
- [Linear Algebra] Diagonalizable operator and Spectrum
- Question about interest earned
- Find eigenvalues and eigenvectors of $\begin{pmatrix} -3 & 0 & 2 \\ 1 &-1 &0\\ -2 & -1& 0 \end{pmatrix} $
- Length of a matrix module
- Linear algebra