For what values k is the system consistent?
Let $T : \mathbb{R} ^{2} \rightarrow \mathbb{R} ^{3}$ be a linear representation with a standard matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & -4 & -k \end{bmatrix} $
where k is a number that we can vary. (Note that it is not an extended matrix).
a) For what values k is the system $Ax = \begin{bmatrix}-17\\34\end{bmatrix} $ consistent?
b) For what values k is the system $Ax = \begin{bmatrix}1\\34\end{bmatrix} $ consistent?
c) For what values k is the linear representation T onto?
d) For what values k is the linear representation T one-to-one?
64
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1197 views
- $15.00
Related Questions
- Singular Value Decomposition Example
- Find the values of x
- Find $x$ so that $\begin{bmatrix} 2 & 0 & 10 \\ 0 & x+7 & -3 \\ 0 & 4 & x \end{bmatrix} $ is invertible
- Show that eigenvectors of a symmetric matrix are orthogonal
- Linear Algebra: Quadratic Forms and Matrix Norms
- Prove that $V={(𝑥_1,𝑥_2,⋯,𝑥_n) \in ℝ^n ∣ 𝑥_1+𝑥_2+...+𝑥_{𝑛−1}−2𝑥_𝑛=0}\}$ is a subspace of $\R^n$.
- Find eigenvalues and eigenvectors of the matrix $\begin{pmatrix} 1 & 6 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} $
- Linear algebra| finding a base