For what values k is the system consistent?
Let $T : \mathbb{R} ^{2} \rightarrow \mathbb{R} ^{3}$ be a linear representation with a standard matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & -4 & -k \end{bmatrix} $
where k is a number that we can vary. (Note that it is not an extended matrix).
a) For what values k is the system $Ax = \begin{bmatrix}-17\\34\end{bmatrix} $ consistent?
b) For what values k is the system $Ax = \begin{bmatrix}1\\34\end{bmatrix} $ consistent?
c) For what values k is the linear representation T onto?
d) For what values k is the linear representation T one-to-one?

64
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.

1.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 806 views
- $15.00
Related Questions
- linear algebra
- Find the values of a, for which the system is consistent. Give a geometric interpretation of the solution(s).
- Prove that $V={(𝑥_1,𝑥_2,⋯,𝑥_n) \in ℝ^n ∣ 𝑥_1+𝑥_2+...+𝑥_{𝑛−1}−2𝑥_𝑛=0}\}$ is a subspace of $\R^n$.
- [Linear Algebra] Diagonalizable operator and Spectrum
- How do I evaluate and interpret these sets of vectors and their geometric descriptions?
- How to filter data with the appearance of a Sine wave to 'flattern' the peaks
- Relating dot product divided with square of the vector while changing basis of vector
- Let $\mathbb{C} ^{2} $ a complex vector space over $\mathbb{C} $ . Find a complex subspace unidimensional $M$ $\subset \mathbb{C} ^{2} $ such that $\mathbb{C} ^{2} \cap M =\left \{ 0 \right \} $