Consider the plane in R^4 , calculate an orthonormal basis
[Orthogonal complement in dimension 4]. Consider the plane M in R^4 defined by the following equations:
(Image 1)
(a) Calculate an orthonormal basis (v1, v2) for M
(b) Calculate an orthonormal basis (W1, W2) for the orthogonal complement of M, N= M ⊥
(c) Prove that the family β = (V1, V2,W1,W2) is an orthonormal basis for R^4
28
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.

1.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 811 views
- $8.00
Related Questions
- Let $H$ be the subset of all 3x3 matrices that satisfy $A^T$ = $-A$. Carefully prove that $H$ is a subspace of $M_{3x3} $ . Then find a basis for $H$.
- Eigenvalues and eigenvectors of $\begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix} $
- How do I evaluate and interpret these sets of vectors and their geometric descriptions?
- Frontal solver by Bruce Irons? Am I using the right Algorithm here?
- Step by step method to solve the following problem: find coordinates of B.
- Algebraic and Graphical Modelling Question
- Show that the $5\times 5$ matrix is not invertable
- Show that $tr(\sqrt{\sqrt A B \sqrt A})\leq 1$ , where both $A$ and $B$ are positive semidefinite with $tr(A)=tr(B)=1.$
Do you need all the calculations or are you happy with the set of vectors (and the way to get them) and do the calculations yourself?
the set of vectors and how to get them is fine