[change of basis] Consider the family β = (1 + x + x 2 , x − x 2 , 2 + x 2 ) of the polynomial space of degree ≤ 2, R2[x].
[change of basis] Consider the family β = (1 + x + x 2 , x − x 2 , 2 + x 2 ) of the polynomial space of degree ≤ 2, R2[x].
- Prove that β of R2[x] is a basis of R2[x].
- Calculate Mβcan , the matrix for change of basis from the basis β to the canonical basis of R2[x].
-Calculate the kernel and range of the matrix Mβcan
- If we were to change β for any other basis of R2[x], would the kernel and range of Mβcan change?
22
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1092 views
- $9.00
Related Questions
- Consider the matrix, calculate a basis of the null space and column space
- Questions about using matrices for finding best straight line by linear regression
- [ eigenvalues and eigenvectors] Prove that (v1, v2, v3) is a basis of R^3
- Linear Algebra Exam
- For what values k is the system consistent?
- Find $x$ so that $\begin{bmatrix} 2 & 0 & 10 \\ 0 & x+7 & -3 \\ 0 & 4 & x \end{bmatrix} $ is invertible
- How do I evaluate and interpret these sets of vectors and their geometric descriptions?
- Show that $tr(\sqrt{\sqrt A B \sqrt A})\leq 1$ , where both $A$ and $B$ are positive semidefinite with $tr(A)=tr(B)=1.$