Prove that $V={(𝑥_1,𝑥_2,⋯,𝑥_n) \in ℝ^n ∣ 𝑥_1+𝑥_2+...+𝑥_{𝑛−1}−2𝑥_𝑛=0}\}$ is a subspace of $\R^n$.
Answer
Let $t,s \in \R$ and $x,y\in V$. Then $x=(x_1, \dots, x_{n-1}, x_n)$ and $y=(y_1, \dots, y_{n-1}, y_n)$ with
\[x_1 +x _2 +...+x_{n−1} −2x_ n =0\]
and
\[y_1 +y _2 +...+y_{n−1} −2y_ n =0.\]
Hence
\[z=tx+sy=t(x_1, \dots, x_{n-1}, x_n)+s(y_1, \dots, y_{n-1}, y_n)\]
\[=(tx_1+sy_1, tx_2+sy_2, \dots, tx_{n}+sy_{n}).\]
Thus we have
\[z_1 +z _2 +...+z_{n−1} −2z_ n=\]
\[(tx_1+sy_1)+(tx_2+sy_2)+\dots +(tx_{n-1}+sy_{n-1})-2 (tx_{n}+sy_{n})\]
\[=t(x_1 +x _2 +...+x_{n−1} −2x_ n)+s(y_1 +y _2 +...+y_{n−1} −2y_ n )=t\times 0+s\times 0=0.\]
Therefore $tx+sy \in V$ and hence $V$ is a vector space.
Erdos
4.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1392 views
- $15.00
Related Questions
- Linear Algebra - matrices and vectors
- Linear Algebra Question
- Linear Algebra Help : Consider Two Planes, P1 and P2
- Find eigenvalues and eigenvectors of $\begin{pmatrix} 1 & 6 & 0 \\ 0& 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} $
- Character of 2-dimensional irreducible representation of $S_4$
- Help with linear algebra HW. Please show work!
- Consider the vector v = (3, 4, 5)^T, calculate the orthogonal projection
- Calculate the inverse of a triangular matrix