Find the values of x
Given the matrices
A=$\begin{pmatrix} 1-x & 1 & 0 \\ 1 & 1-x & 0 \\ -1 & x-1 & x \end{pmatrix} $ and B(x)= $\begin{pmatrix} 1 & 1 & x \\ -1 & x & 0 \\ -1 & x^{2} & x \end{pmatrix} $ , x ∈ R
a) Find the values of x, at which $det(A^{T}(x))≤det(−B(x))$
b) Find the values of x, at which rankA(x) ≤ rankB(x) = 2
Edintam372
18
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
Aman R
643
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 702 views
- $5.00
Related Questions
- Frontal solver by Bruce Irons? Am I using the right Algorithm here?
- [change of basis] Consider the family β = (1 + x + x 2 , x − x 2 , 2 + x 2 ) of the polynomial space of degree ≤ 2, R2[x].
- Questions about using matrices for finding best straight line by linear regression
- Consider the vector v = (3, 4, 5)^T, calculate the orthogonal projection
- Find eigenvalues and eigenvectors of $\begin{pmatrix} 1 & 6 & 0 \\ 0& 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} $
- Find the general solution of the system of ODE $X'=\begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix} X$
- Relating dot product divided with square of the vector while changing basis of vector
- Show that the $5\times 5$ matrix is not invertable