Find the values of x
Given the matrices
A=$\begin{pmatrix} 1-x & 1 & 0 \\ 1 & 1-x & 0 \\ -1 & x-1 & x \end{pmatrix} $ and B(x)= $\begin{pmatrix} 1 & 1 & x \\ -1 & x & 0 \\ -1 & x^{2} & x \end{pmatrix} $ , x ∈ R
a) Find the values of x, at which $det(A^{T}(x))≤det(−B(x))$
b) Find the values of x, at which rankA(x) ≤ rankB(x) = 2
18
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
649
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 828 views
- $5.00
Related Questions
- Find the null space of the matrix $\begin{pmatrix} 1 & 2 & -1 \\ 3 & -3 & 1 \end{pmatrix}$
- Hamming metric isometries
- Stuck on this and need the answer for this problem at 6. Thanks
- Help with linear algebra HW. Please show work!
- Linear Algebra - Matrices (Multiple Choice Question) (1st Year College)
- Eigenvalues and eigenvectors of $\begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix} $
- Conjugate / Transpose - Matrix
- Length of a matrix module