Linear independence of functions
Show that
(i) the functions $f_1(t)=t e^t $ and $f_2(t)=e^t$ are linearly independent on $(0,1)$.
(ii) $f_1(t)=t e^t $ and $f_2(t)=e^t$ are linearly dependent for every fixed $t\in (0,1)$.
I confused about this question. Part (i) and (ii) are really similar, but they are asking me two prove completely different things.
41
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.

4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 706 views
- $2.00
Related Questions
- Eigenvalues and eigenvectors of $\begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix} $
- Find eigenvalues and eigenvectors of the matrix $\begin{pmatrix} 1 & 6 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} $
- [Linear Algebra] Diagonalizable operator and Spectrum
- Linear Algebra - Matrices and Inverses Matrices
- Numerical Linear Algebra Question
- Consider the matrix, calculate a basis of the null space and column space
- Find where this discrete 3D spiral converges in explict terms
- The Span and Uniqueness of Solutions in a Parametric Matrix