Linear independence of functions
Show that
(i) the functions $f_1(t)=t e^t $ and $f_2(t)=e^t$ are linearly independent on $(0,1)$.
(ii) $f_1(t)=t e^t $ and $f_2(t)=e^t$ are linearly dependent for every fixed $t\in (0,1)$.
I confused about this question. Part (i) and (ii) are really similar, but they are asking me two prove completely different things.
Elviegem
41
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
Erdos
4.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 576 views
- $2.00
Related Questions
- Linear Algebra: Quadratic Forms and Matrix Norms
- Find $a,b,c$ so that $\begin{bmatrix} 0 & 1& 0 \\ 0 & 0 & 1\\ a & b & c \end{bmatrix} $ has the characteristic polynomial $-\lambda^3+4\lambda^2+5\lambda+6=0$
- Consider the vector v = (3, 4, 5)^T, calculate the orthogonal projection
- For what values k is the system consistent?
- Prove that $V={(𝑥_1,𝑥_2,⋯,𝑥_n) \in ℝ^n ∣ 𝑥_1+𝑥_2+...+𝑥_{𝑛−1}−2𝑥_𝑛=0}\}$ is a subspace of $\R^n$.
- Get area of rotated polygon knowing all coordinates and angle.
- Does $\sum_{n=2}^{\infty}\frac{\sin n}{n \ln n}$ converge or diverge?
- Sum of column spaces