Linear independence of functions
Show that
(i) the functions $f_1(t)=t e^t $ and $f_2(t)=e^t$ are linearly independent on $(0,1)$.
(ii) $f_1(t)=t e^t $ and $f_2(t)=e^t$ are linearly dependent for every fixed $t\in (0,1)$.
I confused about this question. Part (i) and (ii) are really similar, but they are asking me two prove completely different things.
41
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1169 views
- $2.00
Related Questions
- Linear Algebra - Matrices (Multiple Choice Question) (1st Year College)
- Show that $tr(\sqrt{\sqrt A B \sqrt A})\leq 1$ , where both $A$ and $B$ are positive semidefinite with $tr(A)=tr(B)=1.$
- Elementary row reduction for an $n\times n$ matrix
- Find where this discrete 3D spiral converges in explict terms
- Linear Algebra: Quadratic Forms and Matrix Norms
- Singular Value Decomposition Example
- Linear Algebra - Vectors and Linear Systems
- The Span and Uniqueness of Solutions in a Parametric Matrix