Linear independence of functions
Show that
(i) the functions $f_1(t)=t e^t $ and $f_2(t)=e^t$ are linearly independent on $(0,1)$.
(ii) $f_1(t)=t e^t $ and $f_2(t)=e^t$ are linearly dependent for every fixed $t\in (0,1)$.
I confused about this question. Part (i) and (ii) are really similar, but they are asking me two prove completely different things.
41
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.

4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 721 views
- $2.00
Related Questions
- Conjugate / Transpose - Matrix
- Show that the $5\times 5$ matrix is not invertable
- Find a vector parametric form and symmetric form, find minimal distance betwen L and P, consider vectors v and w.
- Find eigenvalues and eigenvectors of $\begin{pmatrix} 1 & 6 & 0 \\ 0& 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} $
- Linear algebra
- Determine and compute the elementary matrices: Linear Algebra
- Allocation of Price and Volume changes to a change in Rate
- Get area of rotated polygon knowing all coordinates and angle.