Linear independence of functions 

Show that

(i) the functions $f_1(t)=t e^t $ and $f_2(t)=e^t$ are linearly independent on $(0,1)$. 
(ii) $f_1(t)=t e^t $ and $f_2(t)=e^t$ are linearly dependent for every fixed $t\in (0,1)$. 

I confused about this question. Part (i) and (ii) are really similar, but they are asking me two prove completely different things. 

Answer

Answers can be viewed only if
  1. The questioner was satisfied and accepted the answer, or
  2. The answer was disputed, but the judge evaluated it as 100% correct.
View the answer
The answer is accepted.