# Calculate the inverse of a triangular matrix

Let $B$ be a an upper triangular matrix such that $b_{ij}=0$ for $i\geq j$.

(a) Show that $B^n=0$

(b) Deduce that $$(1_n+B)^{-1}=1_n-B+B^2-\ldots+(-1)^{n-1}B^{n-1}.$$

(c) Use this relation to calculate the inverse of the triangular matrix $$ \left(\begin{array}{ccc} 1&a&b\\0&1&c\\0&0&1 \end{array}\right).$$ I have proved part (a) and part (b), but haven't been able to calculate part (c) using such relation.

**Note:** $1_n$ denotes the identity matrix.

## Answer

**Answers can only be viewed under the following conditions:**

- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.

Erdos

4.7K

The answer is accepted.

Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.

- answered
- 685 views
- $9.84

### Related Questions

- inverse of matrices
- Linear independence of functions
- Let $\mathbb{C} ^{2} $ a complex vector space over $\mathbb{C} $ . Find a complex subspace unidimensional $M$ $\subset \mathbb{C} ^{2} $ such that $\mathbb{C} ^{2} \cap M =\left \{ 0 \right \} $
- Prove that $V={(𝑥_1,𝑥_2,⋯,𝑥_n) \in ℝ^n ∣ 𝑥_1+𝑥_2+...+𝑥_{𝑛−1}−2𝑥_𝑛=0}\}$ is a subspace of $\R^n$.
- Help with probability proofs and matrices proofs (5 problems)
- Find where this discrete 3D spiral converges in explict terms
- Linear algebra| finding a base
- Find $x$ so that $\begin{pmatrix} 1 & 0 & c \\ 0 & a & -b \\ -\frac{1}{a} & x & x^2 \end{pmatrix}$ is invertible