Calculate the inverse of a triangular matrix 

Consider the following exercise:
Let $B$ be a an upper triangular matrix such that $b_{ij}=0$ for $i\geq j$.
(a) Show that $B^n=0$
(b) Deduce that $$(1_n+B)^{-1}=1_n-B+B^2-\ldots+(-1)^{n-1}B^{n-1}.$$
(c) Use this relation to calculate the inverse of the triangular matrix $$ \left(\begin{array}{ccc} 1&a&b\\0&1&c\\0&0&1 \end{array}\right).$$ I have proved part (a) and part (b), but haven't been able to calculate part (c) using such relation.
**Note:** $1_n$ denotes the identity matrix.


Answers can be viewed only if
  1. The questioner was satisfied and accepted the answer, or
  2. The answer was disputed, but the judge evaluated it as 100% correct.
View the answer
Erdos Erdos
  • Erdos Erdos

    Let me know if you need any clarifications.

  • Erdos Erdos

    I only did part (c), as you mentioned you have already done parts (a) and (b).

The answer is accepted.
Join Matchmaticians Affiliate Marketing Program to earn up to 50% commission on every question your affiliated users ask or answer.