Advice for proving existence claims
I’m pretty new to proof—based mathematics and so far I’ve noticed that one type of proof I seem to struggle the most with is proving an existence claim. Particularly, showing the existence of some object with a specified property. From what I gather looking at solutions, this process involves defining some object in a clever way that guarantees its existence and allows you to derive the desired property from its definition. But I feel like I have no idea how to carry out that process systematically. Any advice?
For reference here is an example of the kind of problem I’ve struggled with:
Suppose w1…wn is a basis of W and V is finite dimensional. Prove there is a basis v1…vm of V st with respect to these bases, all entries in the first row of M(T) are 0, except for possibly a 1 in the first entry of the first row.
Where for some basis v1…vn of and a basis w1…wm and some linear transformation
T : V → W, M(T) is defined as the matrix consisting of the entries Aj,k equal to the coefficients in T(vk) = A1,k•w1 + … + Am,k•wk
Answer
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.

-
Let me know if you have ny questions about the proof.
- answered
- 814 views
- $2.00
Related Questions
- [change of basis] Consider the family β = (1 + x + x 2 , x − x 2 , 2 + x 2 ) of the polynomial space of degree ≤ 2, R2[x].
- Prove Property of Projection Matrices
- Linear Algebra Assistance: Linear Combinations of Vectors
- Critique my proof (beginner)
- Linear algebra
- Linear Algebra Question
- Suppose that $(ab)^3 = a^3 b^3$ for all $a, b \in G$. Prove that G must be an abelian goup [Group Theory].
- Get area of rotated polygon knowing all coordinates and angle.
Is V a subspace of W?
Not necessarily