Advice for proving existence claims
I’m pretty new to proof—based mathematics and so far I’ve noticed that one type of proof I seem to struggle the most with is proving an existence claim. Particularly, showing the existence of some object with a specified property. From what I gather looking at solutions, this process involves defining some object in a clever way that guarantees its existence and allows you to derive the desired property from its definition. But I feel like I have no idea how to carry out that process systematically. Any advice?
For reference here is an example of the kind of problem I’ve struggled with:
Suppose w1…wn is a basis of W and V is finite dimensional. Prove there is a basis v1…vm of V st with respect to these bases, all entries in the first row of M(T) are 0, except for possibly a 1 in the first entry of the first row.
Where for some basis v1…vn of and a basis w1…wm and some linear transformation
T : V → W, M(T) is defined as the matrix consisting of the entries Aj,k equal to the coefficients in T(vk) = A1,k•w1 + … + Am,k•wk
Answer
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
-
Let me know if you have ny questions about the proof.
- answered
- 1288 views
- $2.00
Related Questions
- Consider the function, prove that it's bilinear, symmetric, and positive definite
- Let $H$ be the subset of all 3x3 matrices that satisfy $A^T$ = $-A$. Carefully prove that $H$ is a subspace of $M_{3x3} $ . Then find a basis for $H$.
- Prove that $V={(𝑥_1,𝑥_2,⋯,𝑥_n) \in ℝ^n ∣ 𝑥_1+𝑥_2+...+𝑥_{𝑛−1}−2𝑥_𝑛=0}\}$ is a subspace of $\R^n$.
- [Rotations in R^3 ] Consider R∶ R^3 → R^3 the linear transformation that rotates π/3 around the z-axis
- Linear Transformation Problems
- Hamming metric isometries
- Get area of rotated polygon knowing all coordinates and angle.
- [Linear Algebra] $T$-invariant subspace
Is V a subspace of W?
Not necessarily