Let $H$ be the subset of all 3x3 matrices that satisfy $A^T$ = $-A$. Carefully prove that $H$ is a subspace of $M_{3x3} $ . Then find a basis for $H$.
I would not only like to know the answer, but how you tackled this problem. The solution should not be too complex or jargon-dominated, as this is for an intro-level LA class
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1201 views
- $2.00
Related Questions
- How to filter data with the appearance of a Sine wave to 'flattern' the peaks
- Advice for proving existence claims
- Let $\mathbb{C} ^{2} $ a complex vector space over $\mathbb{C} $ . Find a complex subspace unidimensional $M$ $\subset \mathbb{C} ^{2} $ such that $\mathbb{C} ^{2} \cap M =\left \{ 0 \right \} $
- Diagonal and Similar Matrices
- [ eigenvalues and eigenvectors] Prove that (v1, v2, v3) is a basis of R^3
- Space of matrices with bounded row space
- Find $x$ so that $\begin{bmatrix} 2 & 0 & 10 \\ 0 & x+7 & -3 \\ 0 & 4 & x \end{bmatrix} $ is invertible
- Sum of column spaces