Find $a,b,c$ so that $\begin{bmatrix} 0 & 1& 0 \\ 0 & 0 & 1\\ a & b & c \end{bmatrix} $ has the characteristic polynomial $-\lambda^3+4\lambda^2+5\lambda+6=0$
Answer
Lets compute the characteristic equation
\[0=\det \begin{bmatrix} -\lambda & 1& 0 \\ 0& -\lambda & 1 \\ a & b & c-\lambda \end{bmatrix} \]
\[=-\lambda \det \begin{bmatrix} -\lambda & 1 \\ b & c-\lambda \end{bmatrix}-1 \det \begin{bmatrix} 0 & 1 \\ a & c-\lambda \end{bmatrix} \]
\[=-\lambda [\lambda (\lambda-c)-b]-[-a]=-\lambda^3+c\lambda^2+b\lambda+a\]
\[=-\lambda^3+4\lambda^2+5\lambda+6.\]
Hence
\[a=6, b=5, c=4.\]
443
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 2098 views
- $3.00
Related Questions
- Prove that language L = {a^p ; p is prime} isn't regular using Myhill-Nerode theorem.
- Use Rouche’s Theorem to show that all roots of $z ^6 + (1 + i)z + 1 = 0$ lines inside the annulus $ \frac{1}{2} \leq |z| \leq \frac{5}{4}$
- Calculating Speed and Velocity
- Algebra Word Problem #2
- MAT-144 Assignment
- General solutions of the system $X'=\begin{pmatrix} a & b \\ c & d \end{pmatrix} $
- Let $R$ be an integral domain and $M$ a finitely generated $R$-module. Show that $rank(M/Tor(M))$=$rank(M)$
- Consider the plane in R^4 , calculate an orthonormal basis
You should offer some more for this question.