Vector field
the vector field $F(x,y)= [ -2 \frac{x}{(x^{2} +y^{2}+1)^2 },-2\frac{y}{(x^{2}+y^{2}+1)^2 } ] $ is conservative throughout the planet. Determine a potential U to F and calculate $\int_{\gamma} \mathbf F \cdot d\,\mathbf r$ where γ is an arbitrary curve in the plane from (3,−4) to (4,1).
calculate U and $\int_{\gamma} \mathbf F \cdot d\,\mathbf r$
Answer
A potential is:
$$U(x,y) = \frac1{x^2+y^2+1}$$
as you may see via the chain rule:
$$\partial_x U(x,y) = -2\frac x{(x^2+y^2+1)^2},\qquad \partial_y U(x,y) = -2\frac y{(x^2+y^2+1)^2}$$
So for any curve $\gamma$ from $(3,-4)$ to $(1,4)$ we have:
$$\int_{\gamma} F\cdot d\gamma = \int_\gamma \mathrm{grad}(U)\cdot d\gamma = U(4,1)-U(3,-4) = \frac1{18}-\frac1{26}$$
by the fundamental theorem of calculus / Stokes' theorem, whatever you are using.
- answered
- 2049 views
- $3.20
Related Questions
- Partial Derivatives and Graphing Functions
- Scalar fields, potentia
- Find $\int \sec^2 x \tan x dx$
- Find the antiderrivative of $\int \frac{v^2-v_o^2}{2\frac{K_e\frac{q_1q_2}{r^2}}{m} } dr$
- Is $\int_1^{\infty}\frac{x+\sqrt{x}+\sin x}{x^2-x+1}dx$ convergent?
- Rewrite $\int_{\sqrt2}^{2\sqrt2} \int_{-\pi/2}^{-\pi/4} r^2cos(\theta)d\theta dr$ in cartesian coordinates (x,y)
- Suppose $u \in C^2(\R^n)$ is a harmonic function. Prove that $v=|\nabla u|^2$ is subharmonic, i.e. $-\Delta v \leq 0$
- Find an expression for the total area of the figure expressed by x.