Consider the function, prove that it's bilinear, symmetric, and positive definite
[Orthogonal Polynomials]. Consider the following bi-valued function defined on the space of polynomials of degree ≤ 2:
(Image 1)
For whichever polynomials p(x), q(x) ∈ P≤2. Consider the following polynomials:
p0(x) = 1, p1(x) = x, p2(x) = (3/2 )x² − 1/2 .
(a) Prove that F is bilinear, symmetric, and positive definite
(b) Prove that the family (p0, p1, p2) is an orthogonal basis of P≤2.
28
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.

1.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 827 views
- $8.00
Related Questions
- Find the eigenvalues of $\begin{pmatrix} -1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 3 & -1 \end{pmatrix} $
- Question on Subspaces
- Decide if the following representations are linear representations.
- Stuck on this and need the answer for this problem at 6. Thanks
- Sum of column spaces
- Find a vector parametric form and symmetric form, find minimal distance betwen L and P, consider vectors v and w.
- Length of a matrix module
- Numerical Linear Algebra Question