Subspace of a Normed Linear Space
Let $V$ be a closed subspace of a normed linear space $(X, \|\cdot\|_X)$.
1) Show that for every $u_0 \in X\backslash V$, there exists $T \in X^*$ such that $\|T\| = 1$, $T \equiv 0$ on $V$ and $T(\lambda u_0) = \lambda d_X(u_0, V)$ for all $\lambda \in \mathbb{R}$, where $d_X(u_0, V) = \inf\{\|u-u_0\|_X: u \in V\}$.
2) Show that $d_X(u_0, V) = \max\{T(u_0): T \in X^*, \|T\| = 1, T \equiv 0$ on $V\}$
Malindad
53
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
Savionf
575
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 314 views
- $25.00
Related Questions
- Uniform convergence of functions
- Suppose that $T \in L(V,W)$. Prove that if Img$(T)$ is dense in $W$ then $T^*$ is one-to-one.
- Let $f:U\subset\mathbb{R} ^3\rightarrow \mathbb{R} ^2$ given by $f(x,y,z)=(sin(x+z)+log(yz^2) ; e^{x+z} +yz)$ where $U = { (x, y, z) ∈ R^3| y, z > 0 }.$ Questions Inside.
- Prove that every compact Hausdorff space is normal
- Let $f\in C (\mathbb{R})$ and $f_n=\frac{1}{n}\sum\limits_{k=0}^{n-1} f(x+\frac{k}{n})$. Prove that $f_n$ converges uniformly on every finite interval.
- Let $(X, ||\cdot||)$ be a normed space. Let $\{x_n\}$ and $\{y_n\}$ be two Cauchy sequences in X. Show that the seqience Show that the sequence $λ_n = ||x_n − y_n|| $ converges.
- A constrained variational problem
- Prove the Function