# Subspace of a Normed Linear Space

1) Show that for every $u_0 \in X\backslash V$, there exists $T \in X^*$ such that $\|T\| = 1$, $T \equiv 0$ on $V$ and $T(\lambda u_0) = \lambda d_X(u_0, V)$ for all $\lambda \in \mathbb{R}$, where $d_X(u_0, V) = \inf\{\|u-u_0\|_X: u \in V\}$.

2) Show that $d_X(u_0, V) = \max\{T(u_0): T \in X^*, \|T\| = 1, T \equiv 0$ on $V\}$

Malindad

53

The answer is accepted.

Join Matchmaticians Affiliate Marketing
Program to earn up to 50% commission on every question your affiliated users ask or answer.

- accepted
- 128 views
- $25.00

### Related Questions

- Banach fixed-point theorem and the map $Tf(x)=\int_0^x f(s)ds $ on $C[0,1]$
- [ Banach Fixt Point Theorem ] $\frac{dy} {dx} = xy, \text{with} \ \ y(0) = 3,$
- Let $f:U\subset\mathbb{R} ^3\rightarrow \mathbb{R} ^2$ given by $f(x,y,z)=(sin(x+z)+log(yz^2) ; e^{x+z} +yz)$ where $U = { (x, y, z) ∈ R^3| y, z > 0 }.$ Questions Inside.
- Uniform convergence of functions
- Two exercises in complex analysis
- Let $f\in C (\mathbb{R})$ and $f_n=\frac{1}{n}\sum\limits_{k=0}^{n-1} f(x+\frac{k}{n})$. Prove that $f_n$ converges uniformly on every finite interval.
- H is a Hilber space
- A function satifying $|f(x)-f(y)|\leq |x-y|^2$ must be constanct.