Create a function whose derivate is:
Calculation of $sinh(ln(x+\sqrt{x^2+1}) $ => $x = 0$
Derivate of $ ln(x+\sqrt{x^2+1})$ => $\tfrac{1}{\sqrt{x^2+1} } $
arcsin^-1(x) = $\tfrac{1}{\sqrt{x^2 +1 } } $
Use the previous information:
Let F be a continuously differentiable function everywhere, and let F be its derivative. Determine a function whose derivative is
a)
$\tfrac{F'(x)}{\sqrt{1+F(x)^2} } $
b)
$\tfrac{F'(2x+3)}{\sqrt{1+F(2x+3)^2} } $
Derivate of $ ln(x+\sqrt{x^2+1})$ => $\tfrac{1}{\sqrt{x^2+1} } $
arcsin^-1(x) = $\tfrac{1}{\sqrt{x^2 +1 } } $
Use the previous information:
Let F be a continuously differentiable function everywhere, and let F be its derivative. Determine a function whose derivative is
a)
$\tfrac{F'(x)}{\sqrt{1+F(x)^2} } $
b)
$\tfrac{F'(2x+3)}{\sqrt{1+F(2x+3)^2} } $

7
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.

443
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 603 views
- $2.00
Related Questions
- Optimisation Problem
- Find $\lim\limits _{n\rightarrow \infty} n^2 \prod\limits_{k=1}^{n} (\frac{1}{k^2}+\frac{1}{n^2})^{\frac{1}{n}}$
- Method of cylindrical shells
- Calculate the following, if it exists: $\int_{0}^{1} x^a(lnx)^mdx$ , where $a > -1$ and $m$ is a nonnegative integer.
- Let $f(x,y,z)=(x^2\cos (yz), \sin (x^2y)-x, e^{y \sin z})$. Compute the derivative matrix $Df$.
- Use Green’s theorem to compute $\int_C x^2 ydx − xy^2 dy$ where $C$ is the circle $x^2 + y ^2 = 4$ oriented counter-clockwise.
- Find amplitude-frequency characteristic of a discrete finite signal using Z-transform
- Two calculus questions
The bounty is too low for a question with 4 parts.
well I can provide you the first 2 parts bc they are easy :D. I am stuck in the a)