Convergence of $\sum\limits_{n=1}^{\infty}(-1)^n\frac{n+2}{n^2+n+1}$
Answer
First note that
\[\lim_{n \rightarrow \infty}\frac{\frac{n+2}{n^2+n+1}}{\frac{1}{n}}=1,\]
and hence by the Limit Comparision Test
\[\sum_{n=1}^{\infty}\frac{n+2}{n^2+n+1}\]
is divergent. Also since
\[\lim_{n\rightarrow}\frac{n+2}{n^2+n+1}=0,\]
by the Alternating Series Test
\[\sum_{n=1}^{\infty}(-1)^n\frac{n+2}{n^2+n+1}\]
converges conditionally but not absolutely.
Savionf
575
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 2187 views
- $2.00
Related Questions
- Calculate the antiderivative of trigonometric functions
- Application of integrals
- Find the antiderrivative of $\int \frac{v^2-v_o^2}{2\frac{K_e\frac{q_1q_2}{r^2}}{m} } dr$
- Notation question. Where does the x in the denominator come from?
- There are two questions about calculus
- Find slope intercept equation
- Prove the trig identity $\frac{\sin x +\tan x}{1+\sec x}=\sin x$
- Convergence of integrals