Improper integral convergence
$\int_{-\infty }^{0} xe^x dx$
Hi. Online calculators are telling me this converges to -1. My first instinct is that it diverges to negative infinity but I get what looks like an indeterminate form when I work through this. Can someone please explain why this converges to negative one? Thanks for your time.
here's what I have when after I substitute the bounds of the integral:
-1 - [ ($-\infty $ -1) (1)]
Hi. Online calculators are telling me this converges to -1. My first instinct is that it diverges to negative infinity but I get what looks like an indeterminate form when I work through this. Can someone please explain why this converges to negative one? Thanks for your time.
here's what I have when after I substitute the bounds of the integral:
-1 - [ ($-\infty $ -1) (1)]
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
4.8K
-
Leave a comment if you need any clarifications.
-
thanks philip
-
My pleasure!
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1343 views
- $10.00
Related Questions
- Find amplitude-frequency characteristic of a discrete finite signal using Z-transform
- Find equation of the tangent line using implicit differentiation
- (a) Find the coordinates (x,y) which will make the rectangular area A = xy a maximum. (b) What is the value of the maximum area?
- Optimization problem
- Early uni/college Calculus (one question)
- Evaluate the integral $\int_{-\infty}^{+\infty}e^{-x^2}dx$
- How do you prove integration gives the area under a curve?
- A bicycle with 18in diameter wheels has its gears set so that the chain has a 6 in. Radius on the front sprocket and 4 in radius on the rear sprocket. The cyclist pedals at 180 rpm.