Zariski Topology and Regular Functions on Algebraic Varieties in Affine Space
i) Show that the Zariski topology on $Spec(k[x,y])$ is NOT the product of the Zariski topologies on $Spec(k[x])\times Spec(k[y])$ (unlike the metric topology, in wich the product of the topologies is equivalent to the topology of the product).
ii) Show that the ring of regular functions $A(P)$ of the parabola $P$ defined by $y=x^2$ in $\mathbb{A}^2_k:=Spec[x,y]$ is isomorph to ring of polynomials in one variable over $k$.
iii) Show that the ring of regular functions $A(P)$ of the plave curve $C$ defined by $x\cdot y=2$ in $\mathbb{A}^2_k$ is NOT isomorph to ring of polynomials in one variable over k.
iv) Let $C$ be a curve in $\mathbb{A}^3_k$ given by the parameterization $\{(t,t^2,t^3)|t\in k\}$.
a) Find generators of the ideal $I(C)$.
b) Show that $A(C)$ is isomorph to ring of polynomials in one indeterminate.
Answer
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
- answered
- 1062 views
- $25.00
Related Questions
- Hamming metric isometries
- Confused on this graph question, not sure how to reduce it to linear and It looks too wonky to draw a best fit line, probably won't take long
- The Span and Uniqueness of Solutions in a Parametric Matrix
- Value Of Investment
- $Tor$ over finite rings
- Algebra 1 Word Problem #3
- Attempting to make a formula/algorithm based on weighted averages to find how much equipment we need to maintain.
- Algebra question