Root of $x^2+1$ in field of positive characteristic
Answer
I guess you're assuming $p$ odd, because if $p=2$ then $x^2+1 = (x+1)^2$ and so it has a root in $\mathbb{F}_2$ (and so in $F$).
By Euler's Criterion https://en.wikipedia.org/wiki/Euler%27s_criterion we have that $-1$ is a quadratic residue modulo $p$ (i.e. there exists $a \in \mathbb{Z}/p \mathbb{Z}$ such that $a^2 \equiv -1 \pmod p$) if and only if $p \equiv 1 \pmod 4$.
Now, if $p^s \equiv 1 \pmod 4$, there are two possibilities: either $p \equiv 1 \pmod 4$ or $p \equiv 3 \pmod 4$ and $s$ is even. In the first case, $x^2 + 1$ factors as $(x-a)(x+a)$ for $a$ such that $a^2 \equiv -1 \pmod p$, so $x^2 + 1$ has a root in $F$. In the second case, $s$ is even so $F$ contains $\mathbb{F}_{p^2}$, and all polynomials of degree two with coefficients in $\mathbb{F}_p$ completely factor in $\mathbb{F}_{p^2}$ and so in $F$.
If $p^s \equiv 3 \pmod 4$ instead, then $p \equiv 3 \pmod 4$ and $s$ is odd. It follows that $x^2+1$ has no roots in $F$ (otherwise $-1$ would be a quadratic residue modulo $p$) and since $s$ is odd $F$ does not contain any quadratic extension of $\mathbb{F}_p$ and so $x^2+1$ is irreducible in $F$, so in particular it does not have a root in $F$.
-
Hey there, I hope you're alright! I was wondering if you could help me with some questions this Friday, 10a.m. GMT. I will have around a 2-2.5 hour window and I'm willing to pay $60 per question if you're online and able to answer within the time limit, would you be interested?
-
Hey sorry, that will be 5 am in my time zone, I won't be available. Good luck with your questions!
- answered
- 2983 views
- $10.00
Related Questions
- Three questions on Vectors
- How old is the wise man?
- Let $R$ be an integral domain and $M$ a finitely generated $R$-module. Show that $rank(M/Tor(M))$=$rank(M)$
- How do you do absolute value equations with inequalities?
- Prove that ${n\choose 2}2^{n-2}=\sum\limits_{k=2}^{n}{n\choose k}{k\choose 2}$ for all $n\geq 2$
- Need Help with Piecewise Function and Graphing it
- Tensor Product II
- Double absolute value equations.