Element satisfying cubic equation in degree $5$ extension
Consider the extension $\mathbb{Q}(α) : \mathbb{Q}$, where $α^5 −α−1 = 0$. Suppose that $f (x) \in \mathbb{Q}[x]$ is of degree $3$ and has a root in $\mathbb{Q}(α)$. Prove that $f (x)$ has a root in $\mathbb{Q}$. Is there a way to show this without long calculations? (For example, using the short tower law). More generally, is it true that, for natural numbers $m, n$, with $m<n$, there is no element satisfying a degree $m$ equation in a degree $n$ extension? Is it only true when $m, n$ are coprime, and why?
152
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.

1.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 747 views
- $11.00
Related Questions
- Show that the distance between two nonparallel lines is given by $\frac{|(p_2-p_1)\cdot (a_1\times a_2)|}{|| a_2\times a_1||}$
- How do you go about solving this question?
- Calculating Speed and Velocity
- Fields and Galois theory
- Algebra Word Problem #1
- Find $n$ such that $\lim _{x \rightarrow \infty} \frac{1}{x} \ln (\frac{e^{x}+e^{2x}+\dots e^{nx}}{n})=9$
- Fluid Mechanics - algebra
- Does $\lim_{n \rightarrow \infty} \frac{2^{n^2}}{n!}$ exist?