Elementary row reduction for an $n\times n$ matrix
Let $A$ be the $n × n$ matrix
$$A= \begin{bmatrix} 1 & 1 & 1 & ... & 1 \\ 1 & 3 & 3 & ... & 3 \\ 1 & 3 & 6 & ... & 6 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 3 & 6 & ... & 3(n-1) \end{bmatrix}$$
(a) Use the appropriate row replacement operations to zero out the first pivot then use the appropriate row replacement operations to zero out the second pivot column.
(b) Observe the resulting matrix from (a) is a block matrix of the form:
$$A = \begin{bmatrix} X & Y \\ 0 & Z \end{bmatrix}$$
State your resulting matrix for X, Y, and Z.
(c) Based on your result from (b), give a detailed set of steps to find $det(Z)$. [HINT: Take out a scaling factor for Z first then find $det(Z)$.]
44
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1612 views
- $35.00
Related Questions
- Decide if the following representations are linear representations.
- Find the general solution of the system of ODE $X'=\begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix} X$
- two short Linear Algebra questions
- Linear Algebra: Quadratic Forms and Matrix Norms
- Length of a matrix module
- Show that eigenvectors of a symmetric matrix are orthogonal
- Find eigenvalues and eigenvectors of $\begin{pmatrix} -3 & 0 & 2 \\ 1 &-1 &0\\ -2 & -1& 0 \end{pmatrix} $
- Certain isometry overfinite ring is product of isometries over each local factor