Elementary row reduction for an $n\times n$ matrix
Let $A$ be the $n × n$ matrix
$$A= \begin{bmatrix} 1 & 1 & 1 & ... & 1 \\ 1 & 3 & 3 & ... & 3 \\ 1 & 3 & 6 & ... & 6 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 3 & 6 & ... & 3(n-1) \end{bmatrix}$$
(a) Use the appropriate row replacement operations to zero out the first pivot then use the appropriate row replacement operations to zero out the second pivot column.
(b) Observe the resulting matrix from (a) is a block matrix of the form:
$$A = \begin{bmatrix} X & Y \\ 0 & Z \end{bmatrix}$$
State your resulting matrix for X, Y, and Z.
(c) Based on your result from (b), give a detailed set of steps to find $det(Z)$. [HINT: Take out a scaling factor for Z first then find $det(Z)$.]
44
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1553 views
- $35.00
Related Questions
- Linear independence of functions
- Linear Algebra Exam
- Find the eigenvalues of $\begin{pmatrix} -1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 3 & -1 \end{pmatrix} $
- Find the null space of the matrix $\begin{pmatrix} 1 & 2 & -1 \\ 3 & -3 & 1 \end{pmatrix}$
- [Linear Algebra] Proof check. Nilpotent$\Rightarrow Spec\Rightarrow$ Characteristic Polynomial $\Rightarrow$ Nilpotent
- Determine and compute the elementary matrices: Linear Algebra
- Linear Algebra: Quadratic Forms and Matrix Norms
- Find the values of a, for which the system is consistent. Give a geometric interpretation of the solution(s).