Space of all matrices with given column space
Let $V$ be the vector space of all $m \times n$ (assume $m \leq n$) matrices $M$ over a field $\mathbb{F}$ whose column space satisfies $\operatorname{colsp}(M) \subseteq W$, where $W \subseteq \mathbb{F}^m$ is a given subspace. Prove that $\operatorname{dim}_\mathbb{F}(V) = n \operatorname{dim}_\mathbb{F}(W)$.
114
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
1.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1221 views
- $10.00
Related Questions
- Advice for proving existence claims
- Diagonal and Similar Matrices
- Consider the matrix, calculate a basis of the null space and column space
- Prove that $V={(𝑥_1,𝑥_2,⋯,𝑥_n) \in ℝ^n ∣ 𝑥_1+𝑥_2+...+𝑥_{𝑛−1}−2𝑥_𝑛=0}\}$ is a subspace of $\R^n$.
- Find eigenvalues and eigenvectors of $\begin{pmatrix} -3 & 0 & 2 \\ 1 &-1 &0\\ -2 & -1& 0 \end{pmatrix} $
- [change of basis] Consider the family β = (1 + x + x 2 , x − x 2 , 2 + x 2 ) of the polynomial space of degree ≤ 2, R2[x].
- Questions about using matrices for finding best straight line by linear regression
- [Rotations in R^3 ] Consider R∶ R^3 → R^3 the linear transformation that rotates π/3 around the z-axis