Diagonal and Similar Matrices
Let A be an nxn matrix with rankA=r>0. Given that 1 is an eigenvalue of A with geometric multiplicity r, prove that A is diagonalizable.
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
4.8K
-
Please leave a comment if you need any clarifications.
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1269 views
- $8.00
Related Questions
- Let $\mathbb{C} ^{2} $ a complex vector space over $\mathbb{C} $ . Find a complex subspace unidimensional $M$ $\subset \mathbb{C} ^{2} $ such that $\mathbb{C} ^{2} \cap M =\left \{ 0 \right \} $
- Find the general solution of the system of ODE $X'=\begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix} X$
- Show that the $5\times 5$ matrix is not invertable
- The Span and Uniqueness of Solutions in a Parametric Matrix
- Linear Algebra - Matrices (Multiple Choice Question) (1st Year College)
- Linearly independent vector subsets.
- Linear Algebra Question
- Consider the vector v = (3, 4, 5)^T, calculate the orthogonal projection