Hello! I Would like a proof detailed of the following question.
Let V=F[x] to be the set of all polynomials over the field F and W to be the set of these polynomials that have degree less than or equal to n.
Find a basis of V/W and dimV/W.
Answer
Solution attached
-
How can you deduced that x^n+1, x^n+2, x^n+3,... is a basis for V/W?
-
Well, we have to think of what V/W is. After quotioning by W, all that is left are polynomials of degree larger than n. So we need every possible power of x with exponent larger than n.
-
Great! I realized that the representatives of each basis vector of V/W, that is, x^n+1, x^n+2,... are just the vectors that complete a basis of V. For finite-dimensional vector spaces, I know that the basis completion theorem can be applied; but I'm not sure if that theorem can be applied to a finite dimensional vector space.
- answered
- 2238 views
- $8.00
Related Questions
- Show that $tr(\sqrt{\sqrt A B \sqrt A})\leq 1$ , where both $A$ and $B$ are positive semidefinite with $tr(A)=tr(B)=1.$
- [Linear Algebra] Diagonalizable operator and Spectrum
- Diagonal and Similar Matrices
- Find where this discrete 3D spiral converges in explict terms
- linear algebra
- Linear Algebra - Vectors and Linear Systems
- Eigenvalues and eigenvectors of $\begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix} $
- Linear Algebra - matrices and vectors
V would be an infinite dimensional space. x^n+1, x^n+2, x^n+3 and so on would be elements there.
I said:" I Would like a proof detailed of the following question"