Hello! I Would like a proof detailed of the following question.
Let V=F[x] to be the set of all polynomials over the field F and W to be the set of these polynomials that have degree less than or equal to n.
Find a basis of V/W and dimV/W.

Answer
Solution attached
-
How can you deduced that x^n+1, x^n+2, x^n+3,... is a basis for V/W?
-
Well, we have to think of what V/W is. After quotioning by W, all that is left are polynomials of degree larger than n. So we need every possible power of x with exponent larger than n.
-
Great! I realized that the representatives of each basis vector of V/W, that is, x^n+1, x^n+2,... are just the vectors that complete a basis of V. For finite-dimensional vector spaces, I know that the basis completion theorem can be applied; but I'm not sure if that theorem can be applied to a finite dimensional vector space.
- answered
- 1616 views
- $8.00
Related Questions
- [Linear Algebra] $T$-invariant subspace
- Find eigenvalues and eigenvectors of $\begin{pmatrix} -3 & 0 & 2 \\ 1 &-1 &0\\ -2 & -1& 0 \end{pmatrix} $
- [change of basis] Consider the family β = (1 + x + x 2 , x − x 2 , 2 + x 2 ) of the polynomial space of degree ≤ 2, R2[x].
- Get area of rotated polygon knowing all coordinates and angle.
- How do I evaluate and interpret these sets of vectors and their geometric descriptions?
- Space of all matrices with given column space
- Find $a,b,c$ so that $\begin{bmatrix} 0 & 1& 0 \\ 0 & 0 & 1\\ a & b & c \end{bmatrix} $ has the characteristic polynomial $-\lambda^3+4\lambda^2+5\lambda+6=0$
- Find eigenvalues and eigenvectors of the matrix $\begin{pmatrix} 1 & 6 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} $
V would be an infinite dimensional space. x^n+1, x^n+2, x^n+3 and so on would be elements there.
I said:" I Would like a proof detailed of the following question"